| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnref1o | Structured version Visualization version Unicode version | ||
| Description: There is a natural
one-to-one mapping from |
| Ref | Expression |
|---|---|
| cnref1o.1 |
|
| Ref | Expression |
|---|---|
| cnref1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnref1o.1 |
. . . . 5
| |
| 2 | ovex 6678 |
. . . . 5
| |
| 3 | 1, 2 | fnmpt2i 7239 |
. . . 4
|
| 4 | 1st2nd2 7205 |
. . . . . . . . 9
| |
| 5 | 4 | fveq2d 6195 |
. . . . . . . 8
|
| 6 | df-ov 6653 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . . 7
|
| 8 | xp1st 7198 |
. . . . . . . 8
| |
| 9 | xp2nd 7199 |
. . . . . . . 8
| |
| 10 | oveq1 6657 |
. . . . . . . . 9
| |
| 11 | oveq2 6658 |
. . . . . . . . . 10
| |
| 12 | 11 | oveq2d 6666 |
. . . . . . . . 9
|
| 13 | ovex 6678 |
. . . . . . . . 9
| |
| 14 | 10, 12, 1, 13 | ovmpt2 6796 |
. . . . . . . 8
|
| 15 | 8, 9, 14 | syl2anc 693 |
. . . . . . 7
|
| 16 | 7, 15 | eqtrd 2656 |
. . . . . 6
|
| 17 | 8 | recnd 10068 |
. . . . . . 7
|
| 18 | ax-icn 9995 |
. . . . . . . 8
| |
| 19 | 9 | recnd 10068 |
. . . . . . . 8
|
| 20 | mulcl 10020 |
. . . . . . . 8
| |
| 21 | 18, 19, 20 | sylancr 695 |
. . . . . . 7
|
| 22 | 17, 21 | addcld 10059 |
. . . . . 6
|
| 23 | 16, 22 | eqeltrd 2701 |
. . . . 5
|
| 24 | 23 | rgen 2922 |
. . . 4
|
| 25 | ffnfv 6388 |
. . . 4
| |
| 26 | 3, 24, 25 | mpbir2an 955 |
. . 3
|
| 27 | 8, 9 | jca 554 |
. . . . . . 7
|
| 28 | xp1st 7198 |
. . . . . . . 8
| |
| 29 | xp2nd 7199 |
. . . . . . . 8
| |
| 30 | 28, 29 | jca 554 |
. . . . . . 7
|
| 31 | cru 11012 |
. . . . . . 7
| |
| 32 | 27, 30, 31 | syl2an 494 |
. . . . . 6
|
| 33 | fveq2 6191 |
. . . . . . . . 9
| |
| 34 | fveq2 6191 |
. . . . . . . . . 10
| |
| 35 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 36 | 35 | oveq2d 6666 |
. . . . . . . . . 10
|
| 37 | 34, 36 | oveq12d 6668 |
. . . . . . . . 9
|
| 38 | 33, 37 | eqeq12d 2637 |
. . . . . . . 8
|
| 39 | 38, 16 | vtoclga 3272 |
. . . . . . 7
|
| 40 | 16, 39 | eqeqan12d 2638 |
. . . . . 6
|
| 41 | 1st2nd2 7205 |
. . . . . . . 8
| |
| 42 | 4, 41 | eqeqan12d 2638 |
. . . . . . 7
|
| 43 | fvex 6201 |
. . . . . . . 8
| |
| 44 | fvex 6201 |
. . . . . . . 8
| |
| 45 | 43, 44 | opth 4945 |
. . . . . . 7
|
| 46 | 42, 45 | syl6bb 276 |
. . . . . 6
|
| 47 | 32, 40, 46 | 3bitr4d 300 |
. . . . 5
|
| 48 | 47 | biimpd 219 |
. . . 4
|
| 49 | 48 | rgen2a 2977 |
. . 3
|
| 50 | dff13 6512 |
. . 3
| |
| 51 | 26, 49, 50 | mpbir2an 955 |
. 2
|
| 52 | cnre 10036 |
. . . . . 6
| |
| 53 | oveq1 6657 |
. . . . . . . . 9
| |
| 54 | oveq2 6658 |
. . . . . . . . . 10
| |
| 55 | 54 | oveq2d 6666 |
. . . . . . . . 9
|
| 56 | ovex 6678 |
. . . . . . . . 9
| |
| 57 | 53, 55, 1, 56 | ovmpt2 6796 |
. . . . . . . 8
|
| 58 | 57 | eqeq2d 2632 |
. . . . . . 7
|
| 59 | 58 | 2rexbiia 3055 |
. . . . . 6
|
| 60 | 52, 59 | sylibr 224 |
. . . . 5
|
| 61 | fveq2 6191 |
. . . . . . . 8
| |
| 62 | df-ov 6653 |
. . . . . . . 8
| |
| 63 | 61, 62 | syl6eqr 2674 |
. . . . . . 7
|
| 64 | 63 | eqeq2d 2632 |
. . . . . 6
|
| 65 | 64 | rexxp 5264 |
. . . . 5
|
| 66 | 60, 65 | sylibr 224 |
. . . 4
|
| 67 | 66 | rgen 2922 |
. . 3
|
| 68 | dffo3 6374 |
. . 3
| |
| 69 | 26, 67, 68 | mpbir2an 955 |
. 2
|
| 70 | df-f1o 5895 |
. 2
| |
| 71 | 51, 69, 70 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: cnexALT 11828 cnrecnv 13905 cpnnen 14958 cnheiborlem 22753 mbfimaopnlem 23422 |
| Copyright terms: Public domain | W3C validator |