MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uzlem Structured version   Visualization version   GIF version

Theorem axdc4uzlem 12782
Description: Lemma for axdc4uz 12783. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
axdc4uz.3 𝐴 ∈ V
axdc4uz.4 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
axdc4uz.5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
Assertion
Ref Expression
axdc4uzlem ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝑥,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘,𝑛,𝑥   𝑦,𝑔,𝑀,𝑘,𝑛,𝑥   𝑔,𝑍,𝑛,𝑥   𝑔,𝐺,𝑘,𝑛,𝑥   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑔,𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem axdc4uzlem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc4uz.1 . . . . . . . . . . 11 𝑀 ∈ ℤ
2 axdc4uz.4 . . . . . . . . . . 11 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
31, 2om2uzf1oi 12752 . . . . . . . . . 10 𝐺:ω–1-1-onto→(ℤ𝑀)
4 axdc4uz.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 f1oeq3 6129 . . . . . . . . . . 11 (𝑍 = (ℤ𝑀) → (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀))
73, 6mpbir 221 . . . . . . . . 9 𝐺:ω–1-1-onto𝑍
8 f1of 6137 . . . . . . . . 9 (𝐺:ω–1-1-onto𝑍𝐺:ω⟶𝑍)
97, 8ax-mp 5 . . . . . . . 8 𝐺:ω⟶𝑍
109ffvelrni 6358 . . . . . . 7 (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝑍)
11 fovrn 6804 . . . . . . 7 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺𝑛) ∈ 𝑍𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1210, 11syl3an2 1360 . . . . . 6 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
13123expb 1266 . . . . 5 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥𝐴)) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1413ralrimivva 2971 . . . 4 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
15 axdc4uz.5 . . . . 5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
1615fmpt2 7237 . . . 4 (∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
1714, 16sylib 208 . . 3 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
18 axdc4uz.3 . . . 4 𝐴 ∈ V
1918axdc4 9278 . . 3 ((𝐶𝐴𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
2017, 19sylan2 491 . 2 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
21 f1ocnv 6149 . . . . . . 7 (𝐺:ω–1-1-onto𝑍𝐺:𝑍1-1-onto→ω)
22 f1of 6137 . . . . . . 7 (𝐺:𝑍1-1-onto→ω → 𝐺:𝑍⟶ω)
237, 21, 22mp2b 10 . . . . . 6 𝐺:𝑍⟶ω
24 fco 6058 . . . . . 6 ((𝑓:ω⟶𝐴𝐺:𝑍⟶ω) → (𝑓𝐺):𝑍𝐴)
2523, 24mpan2 707 . . . . 5 (𝑓:ω⟶𝐴 → (𝑓𝐺):𝑍𝐴)
26253ad2ant1 1082 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓𝐺):𝑍𝐴)
27 uzid 11702 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
281, 27ax-mp 5 . . . . . . . 8 𝑀 ∈ (ℤ𝑀)
2928, 4eleqtrri 2700 . . . . . . 7 𝑀𝑍
30 fvco3 6275 . . . . . . 7 ((𝐺:𝑍⟶ω ∧ 𝑀𝑍) → ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀)))
3123, 29, 30mp2an 708 . . . . . 6 ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀))
321, 2om2uz0i 12746 . . . . . . . 8 (𝐺‘∅) = 𝑀
33 peano1 7085 . . . . . . . . 9 ∅ ∈ ω
34 f1ocnvfv 6534 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅))
357, 33, 34mp2an 708 . . . . . . . 8 ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅)
3632, 35ax-mp 5 . . . . . . 7 (𝐺𝑀) = ∅
3736fveq2i 6194 . . . . . 6 (𝑓‘(𝐺𝑀)) = (𝑓‘∅)
3831, 37eqtri 2644 . . . . 5 ((𝑓𝐺)‘𝑀) = (𝑓‘∅)
39 simp2 1062 . . . . 5 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓‘∅) = 𝐶)
4038, 39syl5eq 2668 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ((𝑓𝐺)‘𝑀) = 𝐶)
4123ffvelrni 6358 . . . . . . . . . 10 (𝑘𝑍 → (𝐺𝑘) ∈ ω)
4241adantl 482 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝐺𝑘) ∈ ω)
43 suceq 5790 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → suc 𝑚 = suc (𝐺𝑘))
4443fveq2d 6195 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (𝐺𝑘)))
45 id 22 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → 𝑚 = (𝐺𝑘))
46 fveq2 6191 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → (𝑓𝑚) = (𝑓‘(𝐺𝑘)))
4745, 46oveq12d 6668 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑚𝐻(𝑓𝑚)) = ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))))
4844, 47eleq12d 2695 . . . . . . . . . 10 (𝑚 = (𝐺𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) ↔ (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
4948rspcv 3305 . . . . . . . . 9 ((𝐺𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
5042, 49syl 17 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
514peano2uzs 11742 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
52 fvco3 6275 . . . . . . . . . . . 12 ((𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
5323, 51, 52sylancr 695 . . . . . . . . . . 11 (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
541, 2om2uzsuci 12747 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
5541, 54syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
56 f1ocnvfv2 6533 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto𝑍𝑘𝑍) → (𝐺‘(𝐺𝑘)) = 𝑘)
577, 56mpan 706 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝐺‘(𝐺𝑘)) = 𝑘)
5857oveq1d 6665 . . . . . . . . . . . . . 14 (𝑘𝑍 → ((𝐺‘(𝐺𝑘)) + 1) = (𝑘 + 1))
5955, 58eqtrd 2656 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = (𝑘 + 1))
60 peano2 7086 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → suc (𝐺𝑘) ∈ ω)
6141, 60syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → suc (𝐺𝑘) ∈ ω)
62 f1ocnvfv 6534 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝑘) ∈ ω) → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
637, 61, 62sylancr 695 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
6459, 63mpd 15 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘))
6564fveq2d 6195 . . . . . . . . . . 11 (𝑘𝑍 → (𝑓‘(𝐺‘(𝑘 + 1))) = (𝑓‘suc (𝐺𝑘)))
6653, 65eqtr2d 2657 . . . . . . . . . 10 (𝑘𝑍 → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
6766adantl 482 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
68 ffvelrn 6357 . . . . . . . . . . . 12 ((𝑓:ω⟶𝐴 ∧ (𝐺𝑘) ∈ ω) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
6941, 68sylan2 491 . . . . . . . . . . 11 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
70 fveq2 6191 . . . . . . . . . . . . 13 (𝑛 = (𝐺𝑘) → (𝐺𝑛) = (𝐺‘(𝐺𝑘)))
7170oveq1d 6665 . . . . . . . . . . . 12 (𝑛 = (𝐺𝑘) → ((𝐺𝑛)𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹𝑥))
72 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = (𝑓‘(𝐺𝑘)) → ((𝐺‘(𝐺𝑘))𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
73 ovex 6678 . . . . . . . . . . . 12 ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) ∈ V
7471, 72, 15, 73ovmpt2 6796 . . . . . . . . . . 11 (((𝐺𝑘) ∈ ω ∧ (𝑓‘(𝐺𝑘)) ∈ 𝐴) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
7542, 69, 74syl2anc 693 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
76 fvco3 6275 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ω ∧ 𝑘𝑍) → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7723, 76mpan 706 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7877eqcomd 2628 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑓‘(𝐺𝑘)) = ((𝑓𝐺)‘𝑘))
7957, 78oveq12d 6668 . . . . . . . . . . 11 (𝑘𝑍 → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8079adantl 482 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8175, 80eqtrd 2656 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8267, 81eleq12d 2695 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8350, 82sylibd 229 . . . . . . 7 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8483impancom 456 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8584ralrimiv 2965 . . . . 5 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
86853adant2 1080 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
87 vex 3203 . . . . . 6 𝑓 ∈ V
88 rdgfun 7512 . . . . . . . . 9 Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀)
89 omex 8540 . . . . . . . . 9 ω ∈ V
90 resfunexg 6479 . . . . . . . . 9 ((Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V)
9188, 89, 90mp2an 708 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V
922, 91eqeltri 2697 . . . . . . 7 𝐺 ∈ V
9392cnvex 7113 . . . . . 6 𝐺 ∈ V
9487, 93coex 7118 . . . . 5 (𝑓𝐺) ∈ V
95 feq1 6026 . . . . . 6 (𝑔 = (𝑓𝐺) → (𝑔:𝑍𝐴 ↔ (𝑓𝐺):𝑍𝐴))
96 fveq1 6190 . . . . . . 7 (𝑔 = (𝑓𝐺) → (𝑔𝑀) = ((𝑓𝐺)‘𝑀))
9796eqeq1d 2624 . . . . . 6 (𝑔 = (𝑓𝐺) → ((𝑔𝑀) = 𝐶 ↔ ((𝑓𝐺)‘𝑀) = 𝐶))
98 fveq1 6190 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓𝐺)‘(𝑘 + 1)))
99 fveq1 6190 . . . . . . . . 9 (𝑔 = (𝑓𝐺) → (𝑔𝑘) = ((𝑓𝐺)‘𝑘))
10099oveq2d 6666 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑘𝐹(𝑔𝑘)) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
10198, 100eleq12d 2695 . . . . . . 7 (𝑔 = (𝑓𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
102101ralbidv 2986 . . . . . 6 (𝑔 = (𝑓𝐺) → (∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
10395, 97, 1023anbi123d 1399 . . . . 5 (𝑔 = (𝑓𝐺) → ((𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))))
10494, 103spcev 3300 . . . 4 (((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10526, 40, 86, 104syl3anc 1326 . . 3 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
106105exlimiv 1858 . 2 (∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10720, 106syl 17 1 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  cmpt 4729   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  suc csuc 5725  Fun wfun 5882  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  reccrdg 7505  1c1 9937   + caddc 9939  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-dc 9268  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  axdc4uz  12783
  Copyright terms: Public domain W3C validator