| Step | Hyp | Ref
| Expression |
| 1 | | dihopelvalcp.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | dihopelvalcp.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 3 | | dihopelvalcp.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 4 | | dihopelvalcp.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 5 | | dihopelvalcp.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | dihopelvalcp.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | dihopelvalcp.i |
. . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| 8 | | dihopelvalcp.n |
. . . 4
⊢ 𝑁 = ((DIsoB‘𝐾)‘𝑊) |
| 9 | | dihopelvalcp.c |
. . . 4
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
| 10 | | dihopelvalcp.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 11 | | dihopelvalcp.y |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | dihvalcq 36525 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊)))) |
| 13 | 12 | eleq2d 2687 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))))) |
| 14 | | simp1 1061 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 15 | | simp3l 1089 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 16 | | dihopelvalcp.v |
. . . . 5
⊢ 𝑉 = (LSubSp‘𝑈) |
| 17 | 2, 5, 6, 10, 9, 16 | diclss 36482 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐶‘𝑄) ∈ 𝑉) |
| 18 | 14, 15, 17 | syl2anc 693 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶‘𝑄) ∈ 𝑉) |
| 19 | | simp1l 1085 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) |
| 20 | | hllat 34650 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 21 | 19, 20 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) |
| 22 | | simp2l 1087 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
| 23 | | simp1r 1086 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) |
| 24 | 1, 6 | lhpbase 35284 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) |
| 26 | 1, 4 | latmcl 17052 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 27 | 21, 22, 25, 26 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 28 | 1, 2, 4 | latmle2 17077 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 29 | 21, 22, 25, 28 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 30 | 1, 2, 6, 10, 8, 16 | diblss 36459 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) |
| 31 | 14, 27, 29, 30 | syl12anc 1324 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) |
| 32 | | dihopelvalcp.d |
. . . 4
⊢ + =
(+g‘𝑈) |
| 33 | 6, 10, 32, 16, 11 | dvhopellsm 36406 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶‘𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
| 34 | 14, 18, 31, 33 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
| 35 | | dihopelvalcp.p |
. . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 36 | | dihopelvalcp.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 37 | | dihopelvalcp.e |
. . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 38 | | dihopelvalcp.g |
. . . . . . . . 9
⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| 39 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 40 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 41 | 2, 5, 6, 35, 36, 37, 9, 38, 39, 40 | dicopelval2 36470 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) |
| 42 | 14, 15, 41 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) |
| 43 | | dihopelvalcp.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 44 | | dihopelvalcp.z |
. . . . . . . . 9
⊢ 𝑍 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 45 | 1, 2, 6, 36, 43, 44, 8 | dibopelval3 36437 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) |
| 46 | 14, 27, 29, 45 | syl12anc 1324 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) |
| 47 | 42, 46 | anbi12d 747 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)))) |
| 48 | 47 | anbi1d 741 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
| 49 | | simpl1 1064 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 50 | | simprll 802 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦‘𝐺)) |
| 51 | | simprlr 803 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦 ∈ 𝐸) |
| 52 | 2, 5, 6, 35 | lhpocnel2 35305 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 53 | 49, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 54 | | simpl3l 1116 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 55 | 2, 5, 6, 36, 38 | ltrniotacl 35867 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 56 | 49, 53, 54, 55 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺 ∈ 𝑇) |
| 57 | 6, 36, 37 | tendocl 36055 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑦‘𝐺) ∈ 𝑇) |
| 58 | 49, 51, 56, 57 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦‘𝐺) ∈ 𝑇) |
| 59 | 50, 58 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 ∈ 𝑇) |
| 60 | | simprll 802 |
. . . . . . . . . . . 12
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧 ∈ 𝑇) |
| 61 | 60 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧 ∈ 𝑇) |
| 62 | | simprrr 805 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) |
| 63 | 1, 6, 36, 37, 44 | tendo0cl 36078 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑍 ∈ 𝐸) |
| 64 | 49, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍 ∈ 𝐸) |
| 65 | 62, 64 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 ∈ 𝐸) |
| 66 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 67 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
| 68 | 6, 36, 37, 10, 66, 32, 67 | dvhopvadd 36382 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑧 ∈ 𝑇 ∧ 𝑤 ∈ 𝐸)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) |
| 69 | 49, 59, 51, 61, 65, 68 | syl122anc 1335 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) |
| 70 | | dihopelvalcp.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑎‘ℎ) ∘ (𝑏‘ℎ)))) |
| 71 | 6, 36, 37, 10, 66, 70, 67 | dvhfplusr 36373 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = 𝑂) |
| 72 | 49, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) →
(+g‘(Scalar‘𝑈)) = 𝑂) |
| 73 | 72 | oveqd 6667 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤)) |
| 74 | 73 | opeq2d 4409 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) |
| 75 | 69, 74 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) |
| 76 | 75 | eqeq2d 2632 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉)) |
| 77 | | dihopelvalcp.f |
. . . . . . . . . 10
⊢ 𝐹 ∈ V |
| 78 | | dihopelvalcp.s |
. . . . . . . . . 10
⊢ 𝑆 ∈ V |
| 79 | 77, 78 | opth 4945 |
. . . . . . . . 9
⊢
(〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤))) |
| 80 | 62 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍)) |
| 81 | 1, 6, 36, 37, 44, 70 | tendo0plr 36080 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸) → (𝑦𝑂𝑍) = 𝑦) |
| 82 | 49, 51, 81 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦) |
| 83 | 80, 82 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦) |
| 84 | 83 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦)) |
| 85 | 84 | anbi2d 740 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
| 86 | 79, 85 | syl5bb 272 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
| 87 | 76, 86 | bitrd 268 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
| 88 | 87 | pm5.32da 673 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)))) |
| 89 | | simplll 798 |
. . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦‘𝐺)) |
| 90 | 89 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) |
| 91 | | simprrr 805 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦) |
| 92 | 91 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) = (𝑦‘𝐺)) |
| 93 | 90, 92 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆‘𝐺)) |
| 94 | 91 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆) |
| 95 | | coass 5654 |
. . . . . . . . . . 11
⊢ ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) |
| 96 | | simpl1 1064 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 97 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑦 ∈ 𝐸) |
| 98 | 97 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) |
| 99 | 91, 98 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 ∈ 𝐸) |
| 100 | 56 | adantrr 753 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) |
| 101 | 6, 36, 37 | tendocl 36055 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑆‘𝐺) ∈ 𝑇) |
| 102 | 96, 99, 100, 101 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) ∈ 𝑇) |
| 103 | 1, 6, 36 | ltrn1o 35410 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
| 104 | 96, 102, 103 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
| 105 | | f1ococnv1 6165 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝐺):𝐵–1-1-onto→𝐵 → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
| 107 | 106 | coeq1d 5283 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧)) |
| 108 | 60 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) |
| 109 | 1, 6, 36 | ltrn1o 35410 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → 𝑧:𝐵–1-1-onto→𝐵) |
| 110 | 96, 108, 109 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵–1-1-onto→𝐵) |
| 111 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (𝑧:𝐵–1-1-onto→𝐵 → 𝑧:𝐵⟶𝐵) |
| 112 | | fcoi2 6079 |
. . . . . . . . . . . . 13
⊢ (𝑧:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) |
| 113 | 110, 111,
112 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) |
| 114 | 107, 113 | eqtr2d 2657 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧)) |
| 115 | | simprrl 804 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) |
| 116 | 93 | coeq1d 5283 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ 𝑧)) |
| 117 | 115, 116 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆‘𝐺) ∘ 𝑧)) |
| 118 | 117 | coeq1d 5283 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
| 119 | 6, 36 | ltrncnv 35432 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → ◡(𝑆‘𝐺) ∈ 𝑇) |
| 120 | 96, 102, 119 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ◡(𝑆‘𝐺) ∈ 𝑇) |
| 121 | 6, 36 | ltrnco 36007 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) |
| 122 | 96, 102, 108, 121 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) |
| 123 | 6, 36 | ltrncom 36026 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡(𝑆‘𝐺) ∈ 𝑇 ∧ ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
| 124 | 96, 120, 122, 123 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
| 125 | 118, 124 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧))) |
| 126 | 95, 114, 125 | 3eqtr4a 2682 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
| 127 | | simplrr 801 |
. . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍) |
| 128 | 127 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍) |
| 129 | 126, 128 | jca 554 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) |
| 130 | 93, 94, 129 | jca31 557 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) |
| 131 | 130 | ex 450 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)))) |
| 132 | 131 | pm4.71rd 667 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) |
| 133 | 88, 132 | bitrd 268 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) |
| 134 | | simprrl 804 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) |
| 135 | | simpll1 1100 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 136 | 89 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) |
| 137 | 97 | adantl 482 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) |
| 138 | 135, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 139 | | simpl3l 1116 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 140 | 139 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 141 | 135, 138,
140, 55 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) |
| 142 | 135, 137,
141, 57 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑦‘𝐺) ∈ 𝑇) |
| 143 | 136, 142 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 ∈ 𝑇) |
| 144 | 60 | ad2antrl 764 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) |
| 145 | 6, 36 | ltrnco 36007 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑥 ∘ 𝑧) ∈ 𝑇) |
| 146 | 135, 143,
144, 145 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) ∈ 𝑇) |
| 147 | 134, 146 | eqeltrd 2701 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 ∈ 𝑇) |
| 148 | | simpl1l 1112 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL) |
| 149 | 148 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL) |
| 150 | 149, 20 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat) |
| 151 | 1, 6, 36, 43 | trlcl 35451 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ∈ 𝐵) |
| 152 | 135, 144,
151 | syl2anc 693 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ∈ 𝐵) |
| 153 | | simpl2l 1114 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋 ∈ 𝐵) |
| 154 | 153 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑋 ∈ 𝐵) |
| 155 | | simpl1r 1113 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊 ∈ 𝐻) |
| 156 | 155 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐻) |
| 157 | 156, 24 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐵) |
| 158 | 150, 154,
157, 26 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 159 | | simprlr 803 |
. . . . . . . . . . 11
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
| 160 | 159 | ad2antrl 764 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
| 161 | 1, 2, 4 | latmle1 17076 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑋) |
| 162 | 150, 154,
157, 161 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ≤ 𝑋) |
| 163 | 1, 2, 150, 152, 158, 154, 160, 162 | lattrd 17058 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ 𝑋) |
| 164 | 147, 137,
163 | jca31 557 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) |
| 165 | | simprll 802 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆‘𝐺)) |
| 166 | 165 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑆‘𝐺)) |
| 167 | | simprlr 803 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆) |
| 168 | 167 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 = 𝑆) |
| 169 | 168 | fveq1d 6193 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑦‘𝐺) = (𝑆‘𝐺)) |
| 170 | 166, 169 | eqtr4d 2659 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑦‘𝐺)) |
| 171 | | simprlr 803 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 ∈ 𝐸) |
| 172 | 170, 171 | jca 554 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸)) |
| 173 | | simprrl 804 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
| 174 | 173 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
| 175 | | simpll1 1100 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 176 | | simprll 802 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 ∈ 𝑇) |
| 177 | 168, 171 | eqeltrrd 2702 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 ∈ 𝐸) |
| 178 | 175, 52 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 179 | 139 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 180 | 175, 178,
179, 55 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐺 ∈ 𝑇) |
| 181 | 175, 177,
180, 101 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺) ∈ 𝑇) |
| 182 | 175, 181,
119 | syl2anc 693 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ◡(𝑆‘𝐺) ∈ 𝑇) |
| 183 | 6, 36 | ltrnco 36007 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ◡(𝑆‘𝐺) ∈ 𝑇) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) |
| 184 | 175, 176,
182, 183 | syl3anc 1326 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) |
| 185 | 174, 184 | eqeltrd 2701 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 ∈ 𝑇) |
| 186 | | simprr 796 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑋) |
| 187 | 2, 6, 36, 43 | trlle 35471 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ≤ 𝑊) |
| 188 | 175, 185,
187 | syl2anc 693 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑊) |
| 189 | 148 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ HL) |
| 190 | 189, 20 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ Lat) |
| 191 | 175, 185,
151 | syl2anc 693 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ∈ 𝐵) |
| 192 | 153 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
| 193 | 155 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐻) |
| 194 | 193, 24 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐵) |
| 195 | 1, 2, 4 | latlem12 17078 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝑧) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) |
| 196 | 190, 191,
192, 194, 195 | syl13anc 1328 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) |
| 197 | 186, 188,
196 | mpbi2and 956 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
| 198 | | simprrr 805 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) |
| 199 | 198 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑤 = 𝑍) |
| 200 | 185, 197,
199 | jca31 557 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) |
| 201 | 175, 181,
103 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
| 202 | 201, 105 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
| 203 | 202 | coeq2d 5284 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) = (𝐹 ∘ ( I ↾ 𝐵))) |
| 204 | 1, 6, 36 | ltrn1o 35410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 205 | 175, 176,
204 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 206 | | f1of 6137 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) |
| 207 | | fcoi1 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
| 208 | 205, 206,
207 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
| 209 | 203, 208 | eqtr2d 2657 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)))) |
| 210 | | coass 5654 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺)) = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) |
| 211 | 209, 210 | syl6eqr 2674 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
| 212 | 6, 36 | ltrncom 36026 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
| 213 | 175, 181,
184, 212 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
| 214 | 211, 213 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) |
| 215 | 166, 174 | coeq12d 5286 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) |
| 216 | 214, 215 | eqtr4d 2659 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝑥 ∘ 𝑧)) |
| 217 | 168 | eqcomd 2628 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 = 𝑦) |
| 218 | 216, 217 | jca 554 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) |
| 219 | 172, 200,
218 | jca31 557 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
| 220 | 164, 219 | impbida 877 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
| 221 | 220 | pm5.32da 673 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
| 222 | | df-3an 1039 |
. . . . . 6
⊢ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
| 223 | 221, 222 | syl6bbr 278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
| 224 | 48, 133, 223 | 3bitrd 294 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
| 225 | 224 | 4exbidv 1854 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
| 226 | | fvex 6201 |
. . . 4
⊢ (𝑆‘𝐺) ∈ V |
| 227 | 226 | cnvex 7113 |
. . . . 5
⊢ ◡(𝑆‘𝐺) ∈ V |
| 228 | 77, 227 | coex 7118 |
. . . 4
⊢ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ V |
| 229 | | fvex 6201 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
| 230 | 36, 229 | eqeltri 2697 |
. . . . . 6
⊢ 𝑇 ∈ V |
| 231 | 230 | mptex 6486 |
. . . . 5
⊢ (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
| 232 | 44, 231 | eqeltri 2697 |
. . . 4
⊢ 𝑍 ∈ V |
| 233 | | biidd 252 |
. . . 4
⊢ (𝑥 = (𝑆‘𝐺) → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
| 234 | | eleq1 2689 |
. . . . . 6
⊢ (𝑦 = 𝑆 → (𝑦 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) |
| 235 | 234 | anbi2d 740 |
. . . . 5
⊢ (𝑦 = 𝑆 → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ↔ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸))) |
| 236 | 235 | anbi1d 741 |
. . . 4
⊢ (𝑦 = 𝑆 → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
| 237 | | fveq2 6191 |
. . . . . 6
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (𝑅‘𝑧) = (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺)))) |
| 238 | 237 | breq1d 4663 |
. . . . 5
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → ((𝑅‘𝑧) ≤ 𝑋 ↔ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) |
| 239 | 238 | anbi2d 740 |
. . . 4
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
| 240 | | biidd 252 |
. . . 4
⊢ (𝑤 = 𝑍 → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
| 241 | 226, 78, 228, 232, 233, 236, 239, 240 | ceqsex4v 3247 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) |
| 242 | 225, 241 | syl6bb 276 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
| 243 | 13, 34, 242 | 3bitrd 294 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |