Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   GIF version

Theorem rabren3dioph 37379
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
rabren3dioph.b 𝑋 ∈ (1...𝑁)
rabren3dioph.c 𝑌 ∈ (1...𝑁)
rabren3dioph.d 𝑍 ∈ (1...𝑁)
Assertion
Ref Expression
rabren3dioph ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝜓,𝑎   𝜑,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   𝑁,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝜓(𝑏)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3203 . . . . . 6 𝑏 ∈ V
2 tpex 6957 . . . . . 6 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} ∈ V
31, 2coex 7118 . . . . 5 (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) ∈ V
4 1ne2 11240 . . . . . . . . . . 11 1 ≠ 2
5 1re 10039 . . . . . . . . . . . 12 1 ∈ ℝ
6 1lt3 11196 . . . . . . . . . . . 12 1 < 3
75, 6ltneii 10150 . . . . . . . . . . 11 1 ≠ 3
8 2re 11090 . . . . . . . . . . . 12 2 ∈ ℝ
9 2lt3 11195 . . . . . . . . . . . 12 2 < 3
108, 9ltneii 10150 . . . . . . . . . . 11 2 ≠ 3
11 1ex 10035 . . . . . . . . . . . 12 1 ∈ V
12 2ex 11092 . . . . . . . . . . . 12 2 ∈ V
13 3ex 11096 . . . . . . . . . . . 12 3 ∈ V
14 rabren3dioph.b . . . . . . . . . . . . 13 𝑋 ∈ (1...𝑁)
1514elexi 3213 . . . . . . . . . . . 12 𝑋 ∈ V
16 rabren3dioph.c . . . . . . . . . . . . 13 𝑌 ∈ (1...𝑁)
1716elexi 3213 . . . . . . . . . . . 12 𝑌 ∈ V
18 rabren3dioph.d . . . . . . . . . . . . 13 𝑍 ∈ (1...𝑁)
1918elexi 3213 . . . . . . . . . . . 12 𝑍 ∈ V
2011, 12, 13, 15, 17, 19fntp 5949 . . . . . . . . . . 11 ((1 ≠ 2 ∧ 1 ≠ 3 ∧ 2 ≠ 3) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3})
214, 7, 10, 20mp3an 1424 . . . . . . . . . 10 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3}
2211tpid1 4303 . . . . . . . . . 10 1 ∈ {1, 2, 3}
23 fvco2 6273 . . . . . . . . . 10 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 1 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)))
2421, 22, 23mp2an 708 . . . . . . . . 9 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1))
2511, 15fvtp1 6460 . . . . . . . . . . 11 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋)
264, 7, 25mp2an 708 . . . . . . . . . 10 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋
2726fveq2i 6194 . . . . . . . . 9 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)) = (𝑏𝑋)
2824, 27eqtri 2644 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)
2912tpid2 4304 . . . . . . . . . 10 2 ∈ {1, 2, 3}
30 fvco2 6273 . . . . . . . . . 10 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 2 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)))
3121, 29, 30mp2an 708 . . . . . . . . 9 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2))
3212, 17fvtp2 6461 . . . . . . . . . . 11 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌)
334, 10, 32mp2an 708 . . . . . . . . . 10 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌
3433fveq2i 6194 . . . . . . . . 9 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)) = (𝑏𝑌)
3531, 34eqtri 2644 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)
3613tpid3 4307 . . . . . . . . . 10 3 ∈ {1, 2, 3}
37 fvco2 6273 . . . . . . . . . 10 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 3 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)))
3821, 36, 37mp2an 708 . . . . . . . . 9 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3))
3913, 19fvtp3 6462 . . . . . . . . . . 11 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍)
407, 10, 39mp2an 708 . . . . . . . . . 10 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍
4140fveq2i 6194 . . . . . . . . 9 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)) = (𝑏𝑍)
4238, 41eqtri 2644 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)
4328, 35, 423pm3.2i 1239 . . . . . . 7 (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))
44 fveq1 6190 . . . . . . . . 9 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘1) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1))
4544eqeq1d 2624 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)))
46 fveq1 6190 . . . . . . . . 9 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘2) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2))
4746eqeq1d 2624 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘2) = (𝑏𝑌) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)))
48 fveq1 6190 . . . . . . . . 9 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘3) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3))
4948eqeq1d 2624 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘3) = (𝑏𝑍) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)))
5045, 47, 493anbi123d 1399 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) ↔ (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))))
5143, 50mpbiri 248 . . . . . 6 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)))
52 rabren3dioph.a . . . . . 6 (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
5351, 52syl 17 . . . . 5 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝜑𝜓))
543, 53sbcie 3470 . . . 4 ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓)
5554a1i 11 . . 3 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓))
5655rabbiia 3185 . 2 {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓}
5711, 12, 13, 15, 17, 19, 4, 7, 10ftp 6424 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍}
58 1z 11407 . . . . . . . 8 1 ∈ ℤ
59 fztp 12397 . . . . . . . 8 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
6058, 59ax-mp 5 . . . . . . 7 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
61 1p2e3 11152 . . . . . . . 8 (1 + 2) = 3
6261oveq2i 6661 . . . . . . 7 (1...(1 + 2)) = (1...3)
63 eqidd 2623 . . . . . . . . 9 (1 ∈ ℤ → 1 = 1)
64 1p1e2 11134 . . . . . . . . . 10 (1 + 1) = 2
6564a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 1) = 2)
6661a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 2) = 3)
6763, 65, 66tpeq123d 4283 . . . . . . . 8 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
6858, 67ax-mp 5 . . . . . . 7 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
6960, 62, 683eqtr3i 2652 . . . . . 6 (1...3) = {1, 2, 3}
7069feq2i 6037 . . . . 5 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ↔ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍})
7157, 70mpbir 221 . . . 4 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍}
7214, 16, 183pm3.2i 1239 . . . . 5 (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁))
7315, 17, 19tpss 4368 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁)) ↔ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁))
7472, 73mpbi 220 . . . 4 {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)
75 fss 6056 . . . 4 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ∧ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁))
7671, 74, 75mp2an 708 . . 3 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁)
77 rabrenfdioph 37378 . . 3 ((𝑁 ∈ ℕ0 ∧ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7876, 77mp3an2 1412 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7956, 78syl5eqelr 2706 1 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  [wsbc 3435  wss 3574  {ctp 4181  cop 4183  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  1c1 9937   + caddc 9939  2c2 11070  3c3 11071  0cn0 11292  cz 11377  ...cfz 12326  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  rmxdioph  37583  expdiophlem2  37589
  Copyright terms: Public domain W3C validator