Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem15 Structured version   Visualization version   GIF version

Theorem poimirlem15 33424
Description: Lemma for poimir 33442, that the face in poimirlem22 33431 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem15.3 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
Assertion
Ref Expression
poimirlem15 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem15
StepHypRef Expression
1 poimirlem22.2 . . . . . 6 (𝜑𝑇𝑆)
2 elrabi 3359 . . . . . . 7 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3 poimirlem22.s . . . . . . 7 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
42, 3eleq2s 2719 . . . . . 6 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
51, 4syl 17 . . . . 5 (𝜑𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
6 xp1st 7198 . . . . 5 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
7 xp1st 7198 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
85, 6, 73syl 18 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
9 xp2nd 7199 . . . . . . . 8 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
105, 6, 93syl 18 . . . . . . 7 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
11 fvex 6201 . . . . . . . 8 (2nd ‘(1st𝑇)) ∈ V
12 f1oeq1 6127 . . . . . . . 8 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
1311, 12elab 3350 . . . . . . 7 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
1410, 13sylib 208 . . . . . 6 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
15 poimirlem15.3 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
16 elfznn 12370 . . . . . . . . . . . . 13 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
1715, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) ∈ ℕ)
1817nnred 11035 . . . . . . . . . . 11 (𝜑 → (2nd𝑇) ∈ ℝ)
1918ltp1d 10954 . . . . . . . . . . 11 (𝜑 → (2nd𝑇) < ((2nd𝑇) + 1))
2018, 19ltned 10173 . . . . . . . . . 10 (𝜑 → (2nd𝑇) ≠ ((2nd𝑇) + 1))
2120necomd 2849 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ≠ (2nd𝑇))
22 fvex 6201 . . . . . . . . . . 11 (2nd𝑇) ∈ V
23 ovex 6678 . . . . . . . . . . 11 ((2nd𝑇) + 1) ∈ V
24 f1oprg 6181 . . . . . . . . . . 11 ((((2nd𝑇) ∈ V ∧ ((2nd𝑇) + 1) ∈ V) ∧ (((2nd𝑇) + 1) ∈ V ∧ (2nd𝑇) ∈ V)) → (((2nd𝑇) ≠ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≠ (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)}))
2522, 23, 23, 22, 24mp4an 709 . . . . . . . . . 10 (((2nd𝑇) ≠ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≠ (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)})
2620, 21, 25syl2anc 693 . . . . . . . . 9 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)})
27 prcom 4267 . . . . . . . . . 10 {((2nd𝑇) + 1), (2nd𝑇)} = {(2nd𝑇), ((2nd𝑇) + 1)}
28 f1oeq3 6129 . . . . . . . . . 10 ({((2nd𝑇) + 1), (2nd𝑇)} = {(2nd𝑇), ((2nd𝑇) + 1)} → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} ↔ {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)}))
2927, 28ax-mp 5 . . . . . . . . 9 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} ↔ {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)})
3026, 29sylib 208 . . . . . . . 8 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)})
31 f1oi 6174 . . . . . . . 8 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
32 disjdif 4040 . . . . . . . . 9 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅
33 f1oun 6156 . . . . . . . . 9 ((({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∧ (({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅ ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
3432, 32, 33mpanr12 721 . . . . . . . 8 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{(2nd𝑇), ((2nd𝑇) + 1)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
3530, 31, 34sylancl 694 . . . . . . 7 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
36 poimir.0 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
3736nncnd 11036 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
38 npcan1 10455 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
4036nnzd 11481 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
41 peano2zm 11420 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4240, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ ℤ)
43 uzid 11702 . . . . . . . . . . . . . 14 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
44 peano2uz 11741 . . . . . . . . . . . . . 14 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
4542, 43, 443syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
4639, 45eqeltrrd 2702 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
47 fzss2 12381 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
4846, 47syl 17 . . . . . . . . . . 11 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
4948, 15sseldd 3604 . . . . . . . . . 10 (𝜑 → (2nd𝑇) ∈ (1...𝑁))
5017peano2nnd 11037 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ∈ ℕ)
5142zred 11482 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
5236nnred 11035 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
53 elfzle2 12345 . . . . . . . . . . . . . 14 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≤ (𝑁 − 1))
5415, 53syl 17 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ≤ (𝑁 − 1))
5552ltm1d 10956 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) < 𝑁)
5618, 51, 52, 54, 55lelttrd 10195 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) < 𝑁)
5717nnzd 11481 . . . . . . . . . . . . 13 (𝜑 → (2nd𝑇) ∈ ℤ)
58 zltp1le 11427 . . . . . . . . . . . . 13 (((2nd𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑇) < 𝑁 ↔ ((2nd𝑇) + 1) ≤ 𝑁))
5957, 40, 58syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑇) < 𝑁 ↔ ((2nd𝑇) + 1) ≤ 𝑁))
6056, 59mpbid 222 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ≤ 𝑁)
61 fznn 12408 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (((2nd𝑇) + 1) ∈ (1...𝑁) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
6240, 61syl 17 . . . . . . . . . . 11 (𝜑 → (((2nd𝑇) + 1) ∈ (1...𝑁) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
6350, 60, 62mpbir2and 957 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ∈ (1...𝑁))
64 prssi 4353 . . . . . . . . . 10 (((2nd𝑇) ∈ (1...𝑁) ∧ ((2nd𝑇) + 1) ∈ (1...𝑁)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁))
6549, 63, 64syl2anc 693 . . . . . . . . 9 (𝜑 → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁))
66 undif 4049 . . . . . . . . 9 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...𝑁) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁))
6765, 66sylib 208 . . . . . . . 8 (𝜑 → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁))
68 f1oeq23 6130 . . . . . . . 8 ((({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁) ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...𝑁)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ↔ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)))
6967, 67, 68syl2anc 693 . . . . . . 7 (𝜑 → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))–1-1-onto→({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ↔ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)))
7035, 69mpbid 222 . . . . . 6 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁))
71 f1oco 6159 . . . . . 6 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
7214, 70, 71syl2anc 693 . . . . 5 (𝜑 → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
73 prex 4909 . . . . . . . 8 {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∈ V
74 ovex 6678 . . . . . . . . 9 (1...𝑁) ∈ V
75 difexg 4808 . . . . . . . . 9 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∈ V)
76 resiexg 7102 . . . . . . . . 9 (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∈ V → ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∈ V)
7774, 75, 76mp2b 10 . . . . . . . 8 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∈ V
7873, 77unex 6956 . . . . . . 7 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) ∈ V
7911, 78coex 7118 . . . . . 6 ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ V
80 f1oeq1 6127 . . . . . 6 (𝑓 = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁)))
8179, 80elab 3350 . . . . 5 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))):(1...𝑁)–1-1-onto→(1...𝑁))
8272, 81sylibr 224 . . . 4 (𝜑 → ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
83 opelxpi 5148 . . . 4 (((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) ∧ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
848, 82, 83syl2anc 693 . . 3 (𝜑 → ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
85 1eluzge0 11732 . . . . . 6 1 ∈ (ℤ‘0)
86 fzss1 12380 . . . . . 6 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
8785, 86ax-mp 5 . . . . 5 (1...𝑁) ⊆ (0...𝑁)
8848, 87syl6ss 3615 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ (0...𝑁))
8988, 15sseldd 3604 . . 3 (𝜑 → (2nd𝑇) ∈ (0...𝑁))
90 opelxpi 5148 . . 3 ((⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (2nd𝑇) ∈ (0...𝑁)) → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
9184, 89, 90syl2anc 693 . 2 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
92 fveq2 6191 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
9392breq2d 4665 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
9493ifbid 4108 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
9594csbeq1d 3540 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
96 fveq2 6191 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (1st𝑡) = (1st𝑇))
9796fveq2d 6195 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
9896fveq2d 6195 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
9998imaeq1d 5465 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
10099xpeq1d 5138 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
10198imaeq1d 5465 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
102101xpeq1d 5138 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
103100, 102uneq12d 3768 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
10497, 103oveq12d 6668 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
105104csbeq2dv 3992 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
10695, 105eqtrd 2656 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
107106mpteq2dv 4745 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
108107eqeq2d 2632 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
109108, 3elrab2 3366 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
110109simprbi 480 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1111, 110syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
112 imaco 5640 . . . . . . . . . 10 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)))
113 f1ofn 6138 . . . . . . . . . . . . . . . 16 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
11426, 113syl 17 . . . . . . . . . . . . . . 15 (𝜑 → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
115114ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
116 incom 3805 . . . . . . . . . . . . . . 15 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
117 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
118117nn0red 11352 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
119 ltnle 10117 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (2nd𝑇) ∈ ℝ) → (𝑦 < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ 𝑦))
120118, 18, 119syl2anr 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ 𝑦))
121120biimpa 501 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ (2nd𝑇) ≤ 𝑦)
122 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ (1...𝑦) → (2nd𝑇) ≤ 𝑦)
123121, 122nsyl 135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ (2nd𝑇) ∈ (1...𝑦))
124 disjsn 4246 . . . . . . . . . . . . . . . . . 18 (((1...𝑦) ∩ {(2nd𝑇)}) = ∅ ↔ ¬ (2nd𝑇) ∈ (1...𝑦))
125123, 124sylibr 224 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {(2nd𝑇)}) = ∅)
126118ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 ∈ ℝ)
12718ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ∈ ℝ)
12850nnred 11035 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑇) + 1) ∈ ℝ)
129128ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ∈ ℝ)
130 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 < (2nd𝑇))
13119ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) < ((2nd𝑇) + 1))
132126, 127, 129, 130, 131lttrd 10198 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 < ((2nd𝑇) + 1))
133 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ ((2nd𝑇) + 1) ∈ ℝ) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
134118, 128, 133syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
135134adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ 𝑦))
136132, 135mpbid 222 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ ((2nd𝑇) + 1) ≤ 𝑦)
137 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑇) + 1) ∈ (1...𝑦) → ((2nd𝑇) + 1) ≤ 𝑦)
138136, 137nsyl 135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ¬ ((2nd𝑇) + 1) ∈ (1...𝑦))
139 disjsn 4246 . . . . . . . . . . . . . . . . . 18 (((1...𝑦) ∩ {((2nd𝑇) + 1)}) = ∅ ↔ ¬ ((2nd𝑇) + 1) ∈ (1...𝑦))
140138, 139sylibr 224 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {((2nd𝑇) + 1)}) = ∅)
141125, 140uneq12d 3768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)})) = (∅ ∪ ∅))
142 df-pr 4180 . . . . . . . . . . . . . . . . . 18 {(2nd𝑇), ((2nd𝑇) + 1)} = ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})
143142ineq2i 3811 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...𝑦) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
144 indi 3873 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)}))
145143, 144eqtr2i 2645 . . . . . . . . . . . . . . . 16 (((1...𝑦) ∩ {(2nd𝑇)}) ∪ ((1...𝑦) ∩ {((2nd𝑇) + 1)})) = ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
146 un0 3967 . . . . . . . . . . . . . . . 16 (∅ ∪ ∅) = ∅
147141, 145, 1463eqtr3g 2679 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
148116, 147syl5eq 2668 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ∅)
149 fnimadisj 6012 . . . . . . . . . . . . . 14 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (1...𝑦)) = ∅) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) = ∅)
150115, 148, 149syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) = ∅)
15139adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
152 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
153 peano2uz 11741 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
154152, 153syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
155154adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
156151, 155eqeltrrd 2702 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝑦))
157 fzss2 12381 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑦) → (1...𝑦) ⊆ (1...𝑁))
158 reldisj 4020 . . . . . . . . . . . . . . . . 17 ((1...𝑦) ⊆ (1...𝑁) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
159156, 157, 1583syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
160159adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((1...𝑦) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
161147, 160mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
162 resiima 5480 . . . . . . . . . . . . . 14 ((1...𝑦) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)) = (1...𝑦))
163161, 162syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)) = (1...𝑦))
164150, 163uneq12d 3768 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦))) = (∅ ∪ (1...𝑦)))
165 imaundir 5546 . . . . . . . . . . . 12 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...𝑦)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...𝑦)))
166 uncom 3757 . . . . . . . . . . . . 13 (∅ ∪ (1...𝑦)) = ((1...𝑦) ∪ ∅)
167 un0 3967 . . . . . . . . . . . . 13 ((1...𝑦) ∪ ∅) = (1...𝑦)
168166, 167eqtr2i 2645 . . . . . . . . . . . 12 (1...𝑦) = (∅ ∪ (1...𝑦))
169164, 165, 1683eqtr4g 2681 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦)) = (1...𝑦))
170169imaeq2d 5466 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...𝑦))) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
171112, 170syl5eq 2668 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
172171xpeq1d 5138 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
173 imaco 5640 . . . . . . . . . 10 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)))
174 imaundir 5546 . . . . . . . . . . . . 13 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)))
175 imassrn 5477 . . . . . . . . . . . . . . . . 17 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}
176175a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
177 fnima 6010 . . . . . . . . . . . . . . . . . . 19 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
17826, 113, 1773syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
179178ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
180 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ)
181 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ (2nd𝑇) ∈ ℤ) → (𝑦 < (2nd𝑇) ↔ (𝑦 + 1) ≤ (2nd𝑇)))
182180, 57, 181syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) ↔ (𝑦 + 1) ≤ (2nd𝑇)))
183182biimpa 501 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 + 1) ≤ (2nd𝑇))
18418, 52, 56ltled 10185 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2nd𝑇) ≤ 𝑁)
185184ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ≤ 𝑁)
18657adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) ∈ ℤ)
187 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
188117, 187syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ)
189188nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ)
190189adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ ℤ)
19140adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℤ)
192 elfz 12332 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑇) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
193186, 190, 191, 192syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
194193adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ (2nd𝑇) ∧ (2nd𝑇) ≤ 𝑁)))
195183, 185, 194mpbir2and 957 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (2nd𝑇) ∈ ((𝑦 + 1)...𝑁))
196 1red 10055 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 1 ∈ ℝ)
197 ltle 10126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ (2nd𝑇) ∈ ℝ) → (𝑦 < (2nd𝑇) → 𝑦 ≤ (2nd𝑇)))
198118, 18, 197syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 < (2nd𝑇) → 𝑦 ≤ (2nd𝑇)))
199198imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → 𝑦 ≤ (2nd𝑇))
200126, 127, 196, 199leadd1dd 10641 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (𝑦 + 1) ≤ ((2nd𝑇) + 1))
20160ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ≤ 𝑁)
20257peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2nd𝑇) + 1) ∈ ℤ)
203202adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) + 1) ∈ ℤ)
204 elfz 12332 . . . . . . . . . . . . . . . . . . . . . 22 ((((2nd𝑇) + 1) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
205203, 190, 191, 204syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
206205adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁) ↔ ((𝑦 + 1) ≤ ((2nd𝑇) + 1) ∧ ((2nd𝑇) + 1) ≤ 𝑁)))
207200, 201, 206mpbir2and 957 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁))
208 prssi 4353 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑇) ∈ ((𝑦 + 1)...𝑁) ∧ ((2nd𝑇) + 1) ∈ ((𝑦 + 1)...𝑁)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁))
209195, 207, 208syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁))
210 imass2 5501 . . . . . . . . . . . . . . . . . 18 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
211209, 210syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
212179, 211eqsstr3d 3640 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)))
213176, 212eqssd 3620 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
214 f1ofo 6144 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–1-1-onto→{((2nd𝑇) + 1), (2nd𝑇)} → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–onto→{((2nd𝑇) + 1), (2nd𝑇)})
215 forn 6118 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}–onto→{((2nd𝑇) + 1), (2nd𝑇)} → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {((2nd𝑇) + 1), (2nd𝑇)})
21626, 214, 2153syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {((2nd𝑇) + 1), (2nd𝑇)})
217216, 27syl6eq 2672 . . . . . . . . . . . . . . . 16 (𝜑 → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
218217ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
219213, 218eqtrd 2656 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) = {(2nd𝑇), ((2nd𝑇) + 1)})
220 undif 4049 . . . . . . . . . . . . . . . . 17 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ ((𝑦 + 1)...𝑁) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((𝑦 + 1)...𝑁))
221209, 220sylib 208 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((𝑦 + 1)...𝑁))
222221imaeq2d 5466 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)))
223 fnresi 6008 . . . . . . . . . . . . . . . . . . 19 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
224 incom 3805 . . . . . . . . . . . . . . . . . . . 20 (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
225224, 32eqtri 2644 . . . . . . . . . . . . . . . . . . 19 (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅
226 fnimadisj 6012 . . . . . . . . . . . . . . . . . . 19 ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∧ (((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
227223, 225, 226mp2an 708 . . . . . . . . . . . . . . . . . 18 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅
228227a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
229 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
230188, 229syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
231 fzss1 12380 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 + 1) ∈ (ℤ‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
232230, 231syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
233232ssdifd 3746 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0...(𝑁 − 1)) → (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
234 resiima 5480 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
235233, 234syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...(𝑁 − 1)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
236235ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
237228, 236uneq12d 3768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
238 imaundi 5545 . . . . . . . . . . . . . . . 16 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
239 uncom 3757 . . . . . . . . . . . . . . . . 17 (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅)
240 un0 3967 . . . . . . . . . . . . . . . . 17 ((((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
241239, 240eqtr2i 2645 . . . . . . . . . . . . . . . 16 (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (∅ ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
242237, 238, 2413eqtr4g 2681 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
243222, 242eqtr3d 2658 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁)) = (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
244219, 243uneq12d 3768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ ((𝑦 + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((𝑦 + 1)...𝑁))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
245174, 244syl5eq 2668 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ (((𝑦 + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
246245, 221eqtrd 2656 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁)) = ((𝑦 + 1)...𝑁))
247246imaeq2d 5466 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ ((𝑦 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
248173, 247syl5eq 2668 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
249248xpeq1d 5138 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
250172, 249uneq12d 3768 . . . . . . 7 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
251250oveq2d 6666 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
252 iftrue 4092 . . . . . . . . 9 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑦)
253252csbeq1d 3540 . . . . . . . 8 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
254 vex 3203 . . . . . . . . 9 𝑦 ∈ V
255 oveq2 6658 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
256255imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)))
257256xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}))
258 oveq1 6657 . . . . . . . . . . . . . 14 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
259258oveq1d 6665 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
260259imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)))
261260xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))
262257, 261uneq12d 3768 . . . . . . . . . 10 (𝑗 = 𝑦 → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})))
263262oveq2d 6666 . . . . . . . . 9 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
264254, 263csbie 3559 . . . . . . . 8 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0})))
265253, 264syl6eq 2672 . . . . . . 7 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
266265adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑦 + 1)...𝑁)) × {0}))))
267252csbeq1d 3540 . . . . . . . 8 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
268255imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
269268xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
270259imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
271270xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
272269, 271uneq12d 3768 . . . . . . . . . 10 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
273272oveq2d 6666 . . . . . . . . 9 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
274254, 273csbie 3559 . . . . . . . 8 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
275267, 274syl6eq 2672 . . . . . . 7 (𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
276275adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
277251, 266, 2763eqtr4d 2666 . . . . 5 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
278 lenlt 10116 . . . . . . . . . 10 (((2nd𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
27918, 118, 278syl2an 494 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
280279biimpar 502 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → (2nd𝑇) ≤ 𝑦)
281 imaco 5640 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))))
282 imaundir 5546 . . . . . . . . . . . . . 14 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))))
283 imassrn 5477 . . . . . . . . . . . . . . . . . 18 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}
284283a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ⊆ ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
285178ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
28617ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ ℕ)
28718ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ ℝ)
288118ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 ∈ ℝ)
289188nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ)
290289ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (𝑦 + 1) ∈ ℝ)
291 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ≤ 𝑦)
292118lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑦 + 1))
293292ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 ≤ (𝑦 + 1))
294287, 288, 290, 291, 293letrd 10194 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ≤ (𝑦 + 1))
295 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + 1) ∈ ℤ → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
296189, 295syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
297296ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) ∈ (1...(𝑦 + 1)) ↔ ((2nd𝑇) ∈ ℕ ∧ (2nd𝑇) ≤ (𝑦 + 1))))
298286, 294, 297mpbir2and 957 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) ∈ (1...(𝑦 + 1)))
29950ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ ℕ)
300 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 1 ∈ ℝ)
301287, 288, 300, 291leadd1dd 10641 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ≤ (𝑦 + 1))
302 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + 1) ∈ ℤ → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
303189, 302syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
304303ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)) ↔ (((2nd𝑇) + 1) ∈ ℕ ∧ ((2nd𝑇) + 1) ≤ (𝑦 + 1))))
305299, 301, 304mpbir2and 957 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ (1...(𝑦 + 1)))
306 prssi 4353 . . . . . . . . . . . . . . . . . . . 20 (((2nd𝑇) ∈ (1...(𝑦 + 1)) ∧ ((2nd𝑇) + 1) ∈ (1...(𝑦 + 1))) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)))
307298, 305, 306syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → {(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)))
308 imass2 5501 . . . . . . . . . . . . . . . . . . 19 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
309307, 308syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
310285, 309eqsstr3d 3640 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ⊆ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))))
311284, 310eqssd 3620 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) = ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩})
312217ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ran {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} = {(2nd𝑇), ((2nd𝑇) + 1)})
313311, 312eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) = {(2nd𝑇), ((2nd𝑇) + 1)})
314 undif 4049 . . . . . . . . . . . . . . . . . 18 ({(2nd𝑇), ((2nd𝑇) + 1)} ⊆ (1...(𝑦 + 1)) ↔ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...(𝑦 + 1)))
315307, 314sylib 208 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (1...(𝑦 + 1)))
316315imaeq2d 5466 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))))
317227a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
318 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
319152, 318syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
320319adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
321151, 320eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
322 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
323321, 322syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
324323ssdifd 3746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
325324adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
326 resiima 5480 . . . . . . . . . . . . . . . . . . 19 (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
327325, 326syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
328317, 327uneq12d 3768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
329 imaundi 5545 . . . . . . . . . . . . . . . . 17 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
330 uncom 3757 . . . . . . . . . . . . . . . . . 18 (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅)
331 un0 3967 . . . . . . . . . . . . . . . . . 18 (((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ ∅) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
332330, 331eqtr2i 2645 . . . . . . . . . . . . . . . . 17 ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (∅ ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
333328, 329, 3323eqtr4g 2681 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
334316, 333eqtr3d 2658 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1))) = ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
335313, 334uneq12d 3768 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (1...(𝑦 + 1))) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (1...(𝑦 + 1)))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
336282, 335syl5eq 2668 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...(𝑦 + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
337336, 315eqtrd 2656 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1))) = (1...(𝑦 + 1)))
338337imaeq2d 5466 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (1...(𝑦 + 1)))) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
339281, 338syl5eq 2668 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
340339xpeq1d 5138 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
341 imaco 5640 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)))
342114ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
343 incom 3805 . . . . . . . . . . . . . . . 16 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
344128ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) ∈ ℝ)
345188peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ)
346345nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℝ)
347346ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((𝑦 + 1) + 1) ∈ ℝ)
34819ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < ((2nd𝑇) + 1))
349118ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1))
350349ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → 𝑦 < (𝑦 + 1))
351287, 288, 290, 291, 350lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < (𝑦 + 1))
352287, 290, 300, 351ltadd1dd 10638 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) + 1) < ((𝑦 + 1) + 1))
353287, 344, 347, 348, 352lttrd 10198 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (2nd𝑇) < ((𝑦 + 1) + 1))
354 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd𝑇) ∈ ℝ ∧ ((𝑦 + 1) + 1) ∈ ℝ) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
35518, 346, 354syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
356355adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd𝑇) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇)))
357353, 356mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((𝑦 + 1) + 1) ≤ (2nd𝑇))
358 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ (2nd𝑇))
359357, 358nsyl 135 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ (2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁))
360 disjsn 4246 . . . . . . . . . . . . . . . . . . 19 (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) = ∅ ↔ ¬ (2nd𝑇) ∈ (((𝑦 + 1) + 1)...𝑁))
361359, 360sylibr 224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) = ∅)
362 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . 23 ((((2nd𝑇) + 1) ∈ ℝ ∧ ((𝑦 + 1) + 1) ∈ ℝ) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
363128, 346, 362syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
364363adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd𝑇) + 1) < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1)))
365352, 364mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1))
366 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20 (((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ ((2nd𝑇) + 1))
367365, 366nsyl 135 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ¬ ((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁))
368 disjsn 4246 . . . . . . . . . . . . . . . . . . 19 (((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}) = ∅ ↔ ¬ ((2nd𝑇) + 1) ∈ (((𝑦 + 1) + 1)...𝑁))
369367, 368sylibr 224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}) = ∅)
370361, 369uneq12d 3768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)})) = (∅ ∪ ∅))
371142ineq2i 3811 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((((𝑦 + 1) + 1)...𝑁) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
372 indi 3873 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ∩ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)}))
373371, 372eqtr2i 2645 . . . . . . . . . . . . . . . . 17 (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇)}) ∪ ((((𝑦 + 1) + 1)...𝑁) ∩ {((2nd𝑇) + 1)})) = ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)})
374370, 373, 1463eqtr3g 2679 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅)
375343, 374syl5eq 2668 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅)
376 fnimadisj 6012 . . . . . . . . . . . . . . 15 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) = ∅)
377342, 375, 376syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) = ∅)
378345, 229syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
379 fzss1 12380 . . . . . . . . . . . . . . . . . 18 (((𝑦 + 1) + 1) ∈ (ℤ‘1) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁))
380 reldisj 4020 . . . . . . . . . . . . . . . . . 18 ((((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
381378, 379, 3803syl 18 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
382381ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((𝑦 + 1) + 1)...𝑁) ∩ {(2nd𝑇), ((2nd𝑇) + 1)}) = ∅ ↔ (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
383374, 382mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
384 resiima 5480 . . . . . . . . . . . . . . 15 ((((𝑦 + 1) + 1)...𝑁) ⊆ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
385383, 384syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
386377, 385uneq12d 3768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁))) = (∅ ∪ (((𝑦 + 1) + 1)...𝑁)))
387 imaundir 5546 . . . . . . . . . . . . 13 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)) = (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} “ (((𝑦 + 1) + 1)...𝑁)) ∪ (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) “ (((𝑦 + 1) + 1)...𝑁)))
388 uncom 3757 . . . . . . . . . . . . . 14 (∅ ∪ (((𝑦 + 1) + 1)...𝑁)) = ((((𝑦 + 1) + 1)...𝑁) ∪ ∅)
389 un0 3967 . . . . . . . . . . . . . 14 ((((𝑦 + 1) + 1)...𝑁) ∪ ∅) = (((𝑦 + 1) + 1)...𝑁)
390388, 389eqtr2i 2645 . . . . . . . . . . . . 13 (((𝑦 + 1) + 1)...𝑁) = (∅ ∪ (((𝑦 + 1) + 1)...𝑁))
391386, 387, 3903eqtr4g 2681 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁)) = (((𝑦 + 1) + 1)...𝑁))
392391imaeq2d 5466 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((2nd ‘(1st𝑇)) “ (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) “ (((𝑦 + 1) + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
393341, 392syl5eq 2668 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
394393xpeq1d 5138 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
395340, 394uneq12d 3768 . . . . . . . 8 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ (2nd𝑇) ≤ 𝑦) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
396280, 395syldan 487 . . . . . . 7 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
397396oveq2d 6666 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
398 iffalse 4095 . . . . . . . . 9 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1))
399398csbeq1d 3540 . . . . . . . 8 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
400 ovex 6678 . . . . . . . . 9 (𝑦 + 1) ∈ V
401 oveq2 6658 . . . . . . . . . . . . 13 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
402401imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))))
403402xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}))
404 oveq1 6657 . . . . . . . . . . . . . 14 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
405404oveq1d 6665 . . . . . . . . . . . . 13 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
406405imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)))
407406xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
408403, 407uneq12d 3768 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
409408oveq2d 6666 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
410400, 409csbie 3559 . . . . . . . 8 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
411399, 410syl6eq 2672 . . . . . . 7 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
412411adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
413398csbeq1d 3540 . . . . . . . 8 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
414401imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
415414xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
416405imaeq2d 5466 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
417416xpeq1d 5138 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
418415, 417uneq12d 3768 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
419418oveq2d 6666 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
420400, 419csbie 3559 . . . . . . . 8 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
421413, 420syl6eq 2672 . . . . . . 7 𝑦 < (2nd𝑇) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
422421adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
423397, 412, 4223eqtr4d 2666 . . . . 5 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < (2nd𝑇)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
424277, 423pm2.61dan 832 . . . 4 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
425424mpteq2dva 4744 . . 3 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
426111, 425eqtr4d 2659 . 2 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))))
427 opex 4932 . . . . . . 7 ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∈ V
428427, 22op1std 7178 . . . . . 6 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩)
429427, 22op2ndd 7179 . . . . . 6 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (2nd𝑡) = (2nd𝑇))
430 breq2 4657 . . . . . . . . 9 ((2nd𝑡) = (2nd𝑇) → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
431430ifbid 4108 . . . . . . . 8 ((2nd𝑡) = (2nd𝑇) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
432431csbeq1d 3540 . . . . . . 7 ((2nd𝑡) = (2nd𝑇) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
433 fvex 6201 . . . . . . . . . 10 (1st ‘(1st𝑇)) ∈ V
434433, 79op1std 7178 . . . . . . . . 9 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
435433, 79op2ndd 7179 . . . . . . . . 9 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
436 id 22 . . . . . . . . . 10 ((1st ‘(1st𝑡)) = (1st ‘(1st𝑇)) → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
437 imaeq1 5461 . . . . . . . . . . . 12 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)))
438437xpeq1d 5138 . . . . . . . . . . 11 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}))
439 imaeq1 5461 . . . . . . . . . . . 12 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)))
440439xpeq1d 5138 . . . . . . . . . . 11 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))
441438, 440uneq12d 3768 . . . . . . . . . 10 ((2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))
442436, 441oveqan12d 6669 . . . . . . . . 9 (((1st ‘(1st𝑡)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
443434, 435, 442syl2anc 693 . . . . . . . 8 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
444443csbeq2dv 3992 . . . . . . 7 ((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
445432, 444sylan9eqr 2678 . . . . . 6 (((1st𝑡) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∧ (2nd𝑡) = (2nd𝑇)) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
446428, 429, 445syl2anc 693 . . . . 5 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))
447446mpteq2dv 4745 . . . 4 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0})))))
448447eqeq2d 2632 . . 3 (𝑡 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
449448, 3elrab2 3366 . 2 (⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆 ↔ (⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
45091, 426, 449sylanbrc 698 1 (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  {crab 2916  Vcvv 3200  csb 3533  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  cres 5116  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑓 cof 6895  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  poimirlem22  33431
  Copyright terms: Public domain W3C validator