| Step | Hyp | Ref
| Expression |
| 1 | | gsumzadd.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 2 | | gsumzadd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | gsumzadd.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
| 4 | 2, 3 | mndidcl 17308 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ 𝐵) |
| 6 | | gsumzadd.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
| 7 | 2, 6, 3 | mndlid 17311 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
| 8 | 1, 5, 7 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
| 9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → ( 0 + 0 ) = 0 ) |
| 10 | | gsumzaddlem.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 11 | | gsumzadd.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | | fvex 6201 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
| 13 | 3, 12 | eqeltri 2697 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ V) |
| 15 | | gsumzaddlem.h |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| 16 | | fex 6490 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐻 ∈ V) |
| 17 | 15, 11, 16 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) |
| 18 | 17 | suppun 7315 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
| 19 | | gsumzaddlem.w |
. . . . . . . . 9
⊢ 𝑊 = ((𝐹 ∪ 𝐻) supp 0 ) |
| 20 | 18, 19 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) |
| 21 | 10, 11, 14, 20 | gsumcllem 18309 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑥 ∈ 𝐴 ↦ 0 )) |
| 22 | 21 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
| 23 | 3 | gsumz 17374 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 24 | 1, 11, 23 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 26 | 22, 25 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐹) = 0 ) |
| 27 | | fex 6490 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
| 28 | 10, 11, 27 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ V) |
| 29 | 28 | suppun 7315 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐻 ∪ 𝐹) supp 0 )) |
| 30 | | uncom 3757 |
. . . . . . . . . . 11
⊢ (𝐹 ∪ 𝐻) = (𝐻 ∪ 𝐹) |
| 31 | 30 | oveq1i 6660 |
. . . . . . . . . 10
⊢ ((𝐹 ∪ 𝐻) supp 0 ) = ((𝐻 ∪ 𝐹) supp 0 ) |
| 32 | 29, 31 | syl6sseqr 3652 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
| 33 | 32, 19 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ 𝑊) |
| 34 | 15, 11, 14, 33 | gsumcllem 18309 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐻 = (𝑥 ∈ 𝐴 ↦ 0 )) |
| 35 | 34 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐻) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
| 36 | 35, 25 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐻) = 0 ) |
| 37 | 26, 36 | oveq12d 6668 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ( 0 + 0 )) |
| 38 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐴 ∈ 𝑉) |
| 39 | 5 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ 𝐴) → 0 ∈ 𝐵) |
| 40 | 38, 39, 39, 21, 34 | offval2 6914 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ 𝐴 ↦ ( 0 + 0 ))) |
| 41 | 9 | mpteq2dv 4745 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑥 ∈ 𝐴 ↦ ( 0 + 0 )) = (𝑥 ∈ 𝐴 ↦ 0 )) |
| 42 | 40, 41 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ 𝐴 ↦ 0 )) |
| 43 | 42 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
| 44 | 43, 25 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = 0 ) |
| 45 | 9, 37, 44 | 3eqtr4rd 2667 |
. . 3
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 46 | 45 | ex 450 |
. 2
⊢ (𝜑 → (𝑊 = ∅ → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
| 47 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐺 ∈ Mnd) |
| 48 | 2, 6 | mndcl 17301 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑧 + 𝑤) ∈ 𝐵) |
| 49 | 48 | 3expb 1266 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 + 𝑤) ∈ 𝐵) |
| 50 | 47, 49 | sylan 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 + 𝑤) ∈ 𝐵) |
| 51 | 50 | caovclg 6826 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 52 | | simprl 794 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (#‘𝑊) ∈
ℕ) |
| 53 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 54 | 52, 53 | syl6eleq 2711 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (#‘𝑊) ∈
(ℤ≥‘1)) |
| 55 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐹:𝐴⟶𝐵) |
| 56 | | f1of1 6136 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(#‘𝑊))–1-1→𝑊) |
| 57 | 56 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(#‘𝑊))–1-1→𝑊) |
| 58 | | suppssdm 7308 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∪ 𝐻) supp 0 ) ⊆ dom (𝐹 ∪ 𝐻) |
| 59 | 58 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐹 ∪ 𝐻) supp 0 ) ⊆ dom (𝐹 ∪ 𝐻)) |
| 60 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 = ((𝐹 ∪ 𝐻) supp 0 )) |
| 61 | | dmun 5331 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ∪ 𝐻) = (dom 𝐹 ∪ dom 𝐻) |
| 62 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 63 | 10, 62 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 64 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐴⟶𝐵 → dom 𝐻 = 𝐴) |
| 65 | 15, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐻 = 𝐴) |
| 66 | 63, 65 | uneq12d 3768 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (dom 𝐹 ∪ dom 𝐻) = (𝐴 ∪ 𝐴)) |
| 67 | | unidm 3756 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| 68 | 66, 67 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom 𝐹 ∪ dom 𝐻) = 𝐴) |
| 69 | 61, 68 | syl5req 2669 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = dom (𝐹 ∪ 𝐻)) |
| 70 | 59, 60, 69 | 3sstr4d 3648 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ⊆ 𝐴) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝑊 ⊆ 𝐴) |
| 72 | | f1ss 6106 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘𝑊))–1-1→𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑓:(1...(#‘𝑊))–1-1→𝐴) |
| 73 | 57, 71, 72 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(#‘𝑊))–1-1→𝐴) |
| 74 | | f1f 6101 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘𝑊))–1-1→𝐴 → 𝑓:(1...(#‘𝑊))⟶𝐴) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(#‘𝑊))⟶𝐴) |
| 76 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑓:(1...(#‘𝑊))⟶𝐴) → (𝐹 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵) |
| 77 | 55, 75, 76 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵) |
| 78 | 77 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 79 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐻:𝐴⟶𝐵) |
| 80 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑓:(1...(#‘𝑊))⟶𝐴) → (𝐻 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵) |
| 81 | 79, 75, 80 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐻 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵) |
| 82 | 81 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 83 | 55 | ffnd 6046 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐹 Fn 𝐴) |
| 84 | 79 | ffnd 6046 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐻 Fn 𝐴) |
| 85 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 𝐴 ∈ 𝑉) |
| 86 | | ovexd 6680 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (1...(#‘𝑊)) ∈ V) |
| 87 | | inidm 3822 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 88 | 83, 84, 75, 85, 85, 86, 87 | ofco 6917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) = ((𝐹 ∘ 𝑓) ∘𝑓 + (𝐻 ∘ 𝑓))) |
| 89 | 88 | fveq1d 6193 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓) ∘𝑓 + (𝐻 ∘ 𝑓))‘𝑘)) |
| 90 | 89 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓) ∘𝑓 + (𝐻 ∘ 𝑓))‘𝑘)) |
| 91 | | fnfco 6069 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑓:(1...(#‘𝑊))⟶𝐴) → (𝐹 ∘ 𝑓) Fn (1...(#‘𝑊))) |
| 92 | 83, 75, 91 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘ 𝑓) Fn (1...(#‘𝑊))) |
| 93 | | fnfco 6069 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑓:(1...(#‘𝑊))⟶𝐴) → (𝐻 ∘ 𝑓) Fn (1...(#‘𝑊))) |
| 94 | 84, 75, 93 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐻 ∘ 𝑓) Fn (1...(#‘𝑊))) |
| 95 | | inidm 3822 |
. . . . . . . . 9
⊢
((1...(#‘𝑊))
∩ (1...(#‘𝑊))) =
(1...(#‘𝑊)) |
| 96 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = ((𝐹 ∘ 𝑓)‘𝑘)) |
| 97 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
| 98 | 92, 94, 86, 86, 95, 96, 97 | ofval 6906 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (((𝐹 ∘ 𝑓) ∘𝑓 + (𝐻 ∘ 𝑓))‘𝑘) = (((𝐹 ∘ 𝑓)‘𝑘) + ((𝐻 ∘ 𝑓)‘𝑘))) |
| 99 | 90, 98 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓)‘𝑘) + ((𝐻 ∘ 𝑓)‘𝑘))) |
| 100 | 1 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝐺 ∈ Mnd) |
| 101 | | elfzouz 12474 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1..^(#‘𝑊)) → 𝑛 ∈
(ℤ≥‘1)) |
| 102 | 101 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝑛 ∈
(ℤ≥‘1)) |
| 103 | | elfzouz2 12484 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1..^(#‘𝑊)) → (#‘𝑊) ∈
(ℤ≥‘𝑛)) |
| 104 | 103 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (#‘𝑊) ∈ (ℤ≥‘𝑛)) |
| 105 | | fzss2 12381 |
. . . . . . . . . . . 12
⊢
((#‘𝑊) ∈
(ℤ≥‘𝑛) → (1...𝑛) ⊆ (1...(#‘𝑊))) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (1...𝑛) ⊆ (1...(#‘𝑊))) |
| 107 | 106 | sselda 3603 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...(#‘𝑊))) |
| 108 | 78 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 109 | 107, 108 | syldan 487 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 110 | 2, 6 | mndcl 17301 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑘 + 𝑥) ∈ 𝐵) |
| 111 | 110 | 3expb 1266 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
| 112 | 100, 111 | sylan 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
| 113 | 102, 109,
112 | seqcl 12821 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (seq1( + , (𝐹 ∘ 𝑓))‘𝑛) ∈ 𝐵) |
| 114 | 82 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 115 | 107, 114 | syldan 487 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
| 116 | 102, 115,
112 | seqcl 12821 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ 𝐵) |
| 117 | | fzofzp1 12565 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1..^(#‘𝑊)) → (𝑛 + 1) ∈ (1...(#‘𝑊))) |
| 118 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
| 119 | 77, 117, 118 | syl2an 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
| 120 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ (((𝐻 ∘ 𝑓):(1...(#‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(#‘𝑊))) → ((𝐻 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
| 121 | 81, 117, 120 | syl2an 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐻 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
| 122 | | fvco3 6275 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(#‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
| 123 | 75, 117, 122 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
| 124 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘(𝑛 + 1)) → (𝐹‘𝑘) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
| 125 | 124 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘(𝑛 + 1)) → ((𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ↔ (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
| 126 | | gsumzaddlem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
| 127 | 126 | expr 643 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑘 ∈ (𝐴 ∖ 𝑥) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 128 | 127 | ralrimiv 2965 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
| 129 | 128 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 130 | 129 | alrimiv 1855 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 131 | 130 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 132 | | imassrn 5477 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ (1...𝑛)) ⊆ ran 𝑓 |
| 133 | 75 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝑓:(1...(#‘𝑊))⟶𝐴) |
| 134 | | frn 6053 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(#‘𝑊))⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
| 135 | 133, 134 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ran 𝑓 ⊆ 𝐴) |
| 136 | 132, 135 | syl5ss 3614 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓 “ (1...𝑛)) ⊆ 𝐴) |
| 137 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V |
| 138 | 137 | imaex 7104 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ (1...𝑛)) ∈ V |
| 139 | | sseq1 3626 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ (1...𝑛)) ⊆ 𝐴)) |
| 140 | | difeq2 3722 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑓 “ (1...𝑛)))) |
| 141 | | reseq2 5391 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐻 ↾ 𝑥) = (𝐻 ↾ (𝑓 “ (1...𝑛)))) |
| 142 | 141 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐺 Σg (𝐻 ↾ 𝑥)) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
| 143 | 142 | sneqd 4189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → {(𝐺 Σg (𝐻 ↾ 𝑥))} = {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) |
| 144 | 143 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) = (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
| 145 | 144 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → ((𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) ↔ (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
| 146 | 140, 145 | raleqbidv 3152 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) ↔ ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
| 147 | 139, 146 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → ((𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) ↔ ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))) |
| 148 | 138, 147 | spcv 3299 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) → ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
| 149 | 131, 136,
148 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
| 150 | | ffvelrn 6357 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(#‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(#‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴) |
| 151 | 75, 117, 150 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴) |
| 152 | | fzp1nel 12424 |
. . . . . . . . . . . . . 14
⊢ ¬
(𝑛 + 1) ∈ (1...𝑛) |
| 153 | 73 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝑓:(1...(#‘𝑊))–1-1→𝐴) |
| 154 | 117 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑛 + 1) ∈ (1...(#‘𝑊))) |
| 155 | | f1elima 6520 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...(#‘𝑊))–1-1→𝐴 ∧ (𝑛 + 1) ∈ (1...(#‘𝑊)) ∧ (1...𝑛) ⊆ (1...(#‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛))) |
| 156 | 153, 154,
106, 155 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛))) |
| 157 | 152, 156 | mtbiri 317 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ¬ (𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛))) |
| 158 | 151, 157 | eldifd 3585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))) |
| 159 | 125, 149,
158 | rspcdva 3316 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
| 160 | 123, 159 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
| 161 | | gsumzadd.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (Cntz‘𝐺) |
| 162 | 138 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓 “ (1...𝑛)) ∈ V) |
| 163 | 15 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝐻:𝐴⟶𝐵) |
| 164 | 163, 136 | fssresd 6071 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝐻 ↾ (𝑓 “ (1...𝑛))):(𝑓 “ (1...𝑛))⟶𝐵) |
| 165 | | gsumzaddlem.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
| 166 | 165 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
| 167 | | resss 5422 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ 𝐻 |
| 168 | | rnss 5354 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ 𝐻 → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻) |
| 169 | 167, 168 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ran
(𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻 |
| 170 | 161 | cntzidss 17770 |
. . . . . . . . . . . . . 14
⊢ ((ran
𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
| 171 | 166, 169,
170 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
| 172 | 102, 53 | syl6eleqr 2712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → 𝑛 ∈ ℕ) |
| 173 | | f1ores 6151 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...(#‘𝑊))–1-1→𝐴 ∧ (1...𝑛) ⊆ (1...(#‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛))) |
| 174 | 153, 106,
173 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛))) |
| 175 | | f1of1 6136 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛))) |
| 176 | 174, 175 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛))) |
| 177 | | suppssdm 7308 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ dom (𝐻 ↾ (𝑓 “ (1...𝑛))) |
| 178 | | dmres 5419 |
. . . . . . . . . . . . . . . 16
⊢ dom
(𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) |
| 179 | 178 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)) |
| 180 | 177, 179 | syl5sseq 3653 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)) |
| 181 | | inss1 3833 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ (𝑓 “ (1...𝑛)) |
| 182 | | df-ima 5127 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛)) |
| 183 | 182 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛))) |
| 184 | 181, 183 | syl5sseq 3653 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ ran (𝑓 ↾ (1...𝑛))) |
| 185 | 180, 184 | sstrd 3613 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ran (𝑓 ↾ (1...𝑛))) |
| 186 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) = (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) |
| 187 | 2, 3, 6, 161, 100, 162, 164, 171, 172, 176, 185, 186 | gsumval3 18308 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))) = (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛)) |
| 188 | 182 | eqimss2i 3660 |
. . . . . . . . . . . . . . . . . 18
⊢ ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) |
| 189 | | cores 5638 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))) |
| 190 | 188, 189 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))) |
| 191 | | resco 5639 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ∘ 𝑓) ↾ (1...𝑛)) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))) |
| 192 | 190, 191 | eqtr4i 2647 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = ((𝐻 ∘ 𝑓) ↾ (1...𝑛)) |
| 193 | 192 | fveq1i 6192 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = (((𝐻 ∘ 𝑓) ↾ (1...𝑛))‘𝑘) |
| 194 | | fvres 6207 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑛) → (((𝐻 ∘ 𝑓) ↾ (1...𝑛))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
| 195 | 193, 194 | syl5eq 2668 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑛) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
| 196 | 195 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
| 197 | 102, 196 | seqfveq 12825 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛) = (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) |
| 198 | 187, 197 | eqtr2d 2657 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
| 199 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ (seq1(
+ ,
(𝐻 ∘ 𝑓))‘𝑛) ∈ V |
| 200 | 199 | elsn 4192 |
. . . . . . . . . . 11
⊢ ((seq1(
+ ,
(𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))} ↔ (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
| 201 | 198, 200 | sylibr 224 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) |
| 202 | 6, 161 | cntzi 17762 |
. . . . . . . . . 10
⊢ ((((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ∧ (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) → (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) = ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1)))) |
| 203 | 160, 201,
202 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) = ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1)))) |
| 204 | 203 | eqcomd 2628 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1))) = (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛))) |
| 205 | 2, 6, 100, 113, 116, 119, 121, 204 | mnd4g 17307 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(#‘𝑊))) → (((seq1( + , (𝐹 ∘ 𝑓))‘𝑛) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) + (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + ((𝐻 ∘ 𝑓)‘(𝑛 + 1)))) = (((seq1( + , (𝐹 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1))) + ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐻 ∘ 𝑓)‘(𝑛 + 1))))) |
| 206 | 51, 51, 54, 78, 82, 99, 205 | seqcaopr3 12836 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (seq1( + , ((𝐹 ∘𝑓
+ 𝐻) ∘ 𝑓))‘(#‘𝑊)) = ((seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊)) + (seq1( + , (𝐻 ∘ 𝑓))‘(#‘𝑊)))) |
| 207 | 50, 55, 79, 85, 85, 87 | off 6912 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘𝑓 + 𝐻):𝐴⟶𝐵) |
| 208 | | gsumzaddlem.3 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘𝑓 + 𝐻))) |
| 209 | 208 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ran (𝐹 ∘𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘𝑓 + 𝐻))) |
| 210 | 47, 111 | sylan 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
| 211 | 210, 55, 79, 85, 85, 87 | off 6912 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘𝑓 + 𝐻):𝐴⟶𝐵) |
| 212 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ ran 𝑓) → 𝑥 ∈ 𝐴) |
| 213 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 214 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐻‘𝑥)) |
| 215 | 83, 84, 85, 85, 87, 213, 214 | ofval 6906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘𝑓 + 𝐻)‘𝑥) = ((𝐹‘𝑥) + (𝐻‘𝑥))) |
| 216 | 212, 215 | sylan2 491 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹 ∘𝑓 + 𝐻)‘𝑥) = ((𝐹‘𝑥) + (𝐻‘𝑥))) |
| 217 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
| 218 | | f1ofo 6144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(#‘𝑊))–onto→𝑊) |
| 219 | | forn 6118 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(#‘𝑊))–onto→𝑊 → ran 𝑓 = 𝑊) |
| 220 | 218, 219 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → ran 𝑓 = 𝑊) |
| 221 | 220, 19 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → ran 𝑓 = ((𝐹 ∪ 𝐻) supp 0 )) |
| 222 | 221 | sseq2d 3633 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
| 223 | 222 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
| 224 | 217, 223 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
| 225 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → 0 ∈ V) |
| 226 | 55, 224, 85, 225 | suppssr 7326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐹‘𝑥) = 0 ) |
| 227 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐻 ∪ 𝐹) supp 0 )) |
| 228 | 227, 31 | syl6sseqr 3652 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
| 229 | 221 | sseq2d 3633 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
| 230 | 229 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
| 231 | 228, 230 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ran 𝑓) |
| 232 | 79, 231, 85, 225 | suppssr 7326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐻‘𝑥) = 0 ) |
| 233 | 226, 232 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹‘𝑥) + (𝐻‘𝑥)) = ( 0 + 0 )) |
| 234 | 8 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ( 0 + 0 ) = 0 ) |
| 235 | 216, 233,
234 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹 ∘𝑓 + 𝐻)‘𝑥) = 0 ) |
| 236 | 211, 235 | suppss 7325 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ((𝐹 ∘𝑓 + 𝐻) supp 0 ) ⊆ ran 𝑓) |
| 237 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝐹 ∘𝑓
+ 𝐻) ∈ V |
| 238 | 237, 137 | coex 7118 |
. . . . . . . 8
⊢ ((𝐹 ∘𝑓
+ 𝐻) ∘ 𝑓) ∈ V |
| 239 | | suppimacnv 7306 |
. . . . . . . . 9
⊢ ((((𝐹 ∘𝑓
+ 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹 ∘𝑓
+ 𝐻) ∘ 𝑓) supp 0 ) = (◡((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) “ (V ∖ { 0 }))) |
| 240 | 239 | eqcomd 2628 |
. . . . . . . 8
⊢ ((((𝐹 ∘𝑓
+ 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (◡((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) supp 0 )) |
| 241 | 238, 13, 240 | mp2an 708 |
. . . . . . 7
⊢ (◡((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓) supp 0 ) |
| 242 | 2, 3, 6, 161, 47, 85, 207, 209, 52, 73, 236, 241 | gsumval3 18308 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = (seq1( + , ((𝐹 ∘𝑓 + 𝐻) ∘ 𝑓))‘(#‘𝑊))) |
| 243 | | gsumzaddlem.1 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 244 | 243 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 245 | | eqid 2622 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
| 246 | 2, 3, 6, 161, 47, 85, 55, 244, 52, 73, 224, 245 | gsumval3 18308 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))) |
| 247 | 165 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
| 248 | | eqid 2622 |
. . . . . . . 8
⊢ ((𝐻 ∘ 𝑓) supp 0 ) = ((𝐻 ∘ 𝑓) supp 0 ) |
| 249 | 2, 3, 6, 161, 47, 85, 79, 247, 52, 73, 231, 248 | gsumval3 18308 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg 𝐻) = (seq1( + , (𝐻 ∘ 𝑓))‘(#‘𝑊))) |
| 250 | 246, 249 | oveq12d 6668 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊)) + (seq1( + , (𝐻 ∘ 𝑓))‘(#‘𝑊)))) |
| 251 | 206, 242,
250 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 252 | 251 | expr 643 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑊) ∈ ℕ) → (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
| 253 | 252 | exlimdv 1861 |
. . 3
⊢ ((𝜑 ∧ (#‘𝑊) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
| 254 | 253 | expimpd 629 |
. 2
⊢ (𝜑 → (((#‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊) → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
| 255 | | gsumzadd.fn |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 256 | | gsumzadd.hn |
. . . . 5
⊢ (𝜑 → 𝐻 finSupp 0 ) |
| 257 | 255, 256 | fsuppun 8294 |
. . . 4
⊢ (𝜑 → ((𝐹 ∪ 𝐻) supp 0 ) ∈
Fin) |
| 258 | 19, 257 | syl5eqel 2705 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 259 | | fz1f1o 14441 |
. . 3
⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ((#‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊))) |
| 260 | 258, 259 | syl 17 |
. 2
⊢ (𝜑 → (𝑊 = ∅ ∨ ((#‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊))) |
| 261 | 46, 254, 260 | mpjaod 396 |
1
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓
+ 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |