Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corclrcl Structured version   Visualization version   GIF version

Theorem corclrcl 37999
Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
corclrcl (r* ∘ r*) = r*

Proof of Theorem corclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 37968 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dfrcl4 37968 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrcl4 37968 . 2 r* = (𝑐 ∈ V ↦ 𝑘 ∈ {0, 1} (𝑐𝑟𝑘))
4 prex 4909 . 2 {0, 1} ∈ V
5 unidm 3756 . . 3 ({0, 1} ∪ {0, 1}) = {0, 1}
65eqcomi 2631 . 2 {0, 1} = ({0, 1} ∪ {0, 1})
7 oveq2 6658 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
87cbviunv 4559 . . . 4 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
9 1ex 10035 . . . . . . 7 1 ∈ V
10 oveq2 6658 . . . . . . 7 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
119, 10iunxsn 4603 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1)
12 ovex 6678 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
134, 12iunex 7147 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
14 relexp1g 13766 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
1513, 14ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1611, 15eqtri 2644 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1716eqcomi 2631 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
188, 17eqtri 2644 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
19 snsspr2 4346 . . . 4 {1} ⊆ {0, 1}
20 iunss1 4532 . . . 4 ({1} ⊆ {0, 1} → 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
2119, 20ax-mp 5 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
2218, 21eqsstri 3635 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
23 c0ex 10034 . . . . . 6 0 ∈ V
2423prid1 4297 . . . . 5 0 ∈ {0, 1}
25 oveq2 6658 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
2625ssiun2s 4564 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
2724, 26ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
28 oveq2 6658 . . . . . 6 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
2928cbviunv 4559 . . . . 5 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
3029eqimssi 3659 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
31 unss12 3785 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)))
3227, 30, 31mp2an 708 . . 3 ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
33 df-pr 4180 . . . . 5 {0, 1} = ({0} ∪ {1})
34 iuneq1 4534 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3533, 34ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
36 iunxun 4605 . . . . 5 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
37 oveq2 6658 . . . . . . . 8 (𝑖 = 0 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0))
3823, 37iunxsn 4603 . . . . . . 7 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0)
39 vex 3203 . . . . . . . 8 𝑑 ∈ V
40 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
41 1nn0 11308 . . . . . . . . 9 1 ∈ ℕ0
42 prssi 4353 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
4340, 41, 42mp2an 708 . . . . . . . 8 {0, 1} ⊆ ℕ0
44 inidm 3822 . . . . . . . . . 10 ({0, 1} ∩ {0, 1}) = {0, 1}
4524, 44eleqtrri 2700 . . . . . . . . 9 0 ∈ ({0, 1} ∩ {0, 1})
4645ne0ii 3923 . . . . . . . 8 ({0, 1} ∩ {0, 1}) ≠ ∅
47 iunrelexp0 37994 . . . . . . . 8 ((𝑑 ∈ V ∧ {0, 1} ⊆ ℕ0 ∧ ({0, 1} ∩ {0, 1}) ≠ ∅) → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
4839, 43, 46, 47mp3an 1424 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
4938, 48eqtri 2644 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
5049, 16uneq12i 3765 . . . . 5 ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5136, 50eqtri 2644 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5235, 51eqtri 2644 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
53 iunxun 4605 . . 3 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5432, 52, 533sstr4i 3644 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘)
551, 2, 3, 4, 4, 6, 22, 22, 54comptiunov2i 37998 1 (r* ∘ r*) = r*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179   ciun 4520  ccom 5118  (class class class)co 6650  0cc0 9936  1c1 9937  0cn0 11292  𝑟crelexp 13760  r*crcl 37964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761  df-rcl 37965
This theorem is referenced by:  corclrtrcl  38033  cortrclrcl  38035
  Copyright terms: Public domain W3C validator