MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Visualization version   GIF version

Theorem cycsubgcyg 18302
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x 𝑋 = (Base‘𝐺)
cycsubgcyg.t · = (.g𝐺)
cycsubgcyg.s 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcyg ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem cycsubgcyg
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2622 . 2 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
3 cycsubgcyg.s . . . 4 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
4 cycsubgcyg.x . . . . . 6 𝑋 = (Base‘𝐺)
5 cycsubgcyg.t . . . . . 6 · = (.g𝐺)
6 eqid 2622 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
74, 5, 6cycsubgcl 17620 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))))
87simpld 475 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺))
93, 8syl5eqel 2705 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
10 eqid 2622 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
1110subggrp 17597 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
129, 11syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ Grp)
137simprd 479 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
1413, 3syl6eleqr 2712 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴𝑆)
1510subgbas 17598 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
169, 15syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 = (Base‘(𝐺s 𝑆)))
1714, 16eleqtrd 2703 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
1816eleq2d 2687 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑦𝑆𝑦 ∈ (Base‘(𝐺s 𝑆))))
1918biimpar 502 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → 𝑦𝑆)
20 simpr 477 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦𝑆)
2120, 3syl6eleq 2711 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
22 oveq1 6657 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
2322cbvmptv 4750 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
24 ovex 6678 . . . . . 6 (𝑛 · 𝐴) ∈ V
2523, 24elrnmpti 5376 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
2621, 25sylib 208 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
279ad2antrr 762 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺))
28 simpr 477 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
2914ad2antrr 762 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴𝑆)
305, 10, 2subgmulg 17608 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3127, 28, 29, 30syl3anc 1326 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3231eqeq2d 2632 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3332rexbidva 3049 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3426, 33mpbid 222 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3519, 34syldan 487 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
361, 2, 12, 17, 35iscygd 18289 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  cz 11377  Basecbs 15857  s cress 15858  Grpcgrp 17422  .gcmg 17540  SubGrpcsubg 17588  CycGrpccyg 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cyg 18280
This theorem is referenced by:  cycsubgcyg2  18303
  Copyright terms: Public domain W3C validator