| Step | Hyp | Ref
| Expression |
| 1 | | iscyg.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | iscyg.2 |
. . . . 5
⊢ · =
(.g‘𝐺) |
| 3 | | iscyg3.e |
. . . . 5
⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| 4 | 1, 2, 3 | iscyggen2 18283 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| 5 | 4 | simprbda 653 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐵) |
| 6 | | cyggeninv.n |
. . . 4
⊢ 𝑁 = (invg‘𝐺) |
| 7 | 1, 6 | grpinvcl 17467 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 8 | 5, 7 | syldan 487 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐵) |
| 9 | 4 | simplbda 654 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 10 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋)) |
| 11 | 10 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋))) |
| 12 | 11 | cbvrexv 3172 |
. . . . 5
⊢
(∃𝑛 ∈
ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋)) |
| 13 | | znegcl 11412 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℤ → -𝑚 ∈
ℤ) |
| 14 | 13 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ) |
| 15 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
| 16 | 15 | zcnd 11483 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
| 17 | 16 | negnegd 10383 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚) |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋)) |
| 19 | | simplll 798 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) |
| 20 | 5 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) |
| 21 | 1, 2, 6 | mulgneg2 17575 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
| 22 | 19, 14, 20, 21 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
| 23 | 18, 22 | eqtr3d 2658 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
| 24 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑚 → (𝑛 · (𝑁‘𝑋)) = (-𝑚 · (𝑁‘𝑋))) |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑛 = -𝑚 → ((𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)) ↔ (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋)))) |
| 26 | 25 | rspcev 3309 |
. . . . . . . 8
⊢ ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋))) |
| 27 | 14, 23, 26 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋))) |
| 28 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁‘𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)))) |
| 29 | 28 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)))) |
| 30 | 27, 29 | syl5ibrcom 237 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
| 31 | 30 | rexlimdva 3031 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
| 32 | 12, 31 | syl5bi 232 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
| 33 | 32 | ralimdva 2962 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
| 34 | 9, 33 | mpd 15 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))) |
| 35 | 1, 2, 3 | iscyggen2 18283 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝑁‘𝑋) ∈ 𝐸 ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))))) |
| 36 | 35 | adantr 481 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ((𝑁‘𝑋) ∈ 𝐸 ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))))) |
| 37 | 8, 34, 36 | mpbir2and 957 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐸) |