Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac21 Structured version   Visualization version   GIF version

Theorem dfac21 37636
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
dfac21 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))

Proof of Theorem dfac21
Dummy variables 𝑔 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7 𝑓 ∈ V
21dmex 7099 . . . . . 6 dom 𝑓 ∈ V
32a1i 11 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom 𝑓 ∈ V)
4 simpr 477 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → 𝑓:dom 𝑓⟶Comp)
5 fvex 6201 . . . . . . . 8 (∏t𝑓) ∈ V
65uniex 6953 . . . . . . 7 (∏t𝑓) ∈ V
7 acufl 21721 . . . . . . . 8 (CHOICE → UFL = V)
87adantr 481 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → UFL = V)
96, 8syl5eleqr 2708 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ UFL)
10 simpl 473 . . . . . . . 8 ((CHOICE𝑓:dom 𝑓⟶Comp) → CHOICE)
11 dfac10 8959 . . . . . . . 8 (CHOICE ↔ dom card = V)
1210, 11sylib 208 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom card = V)
136, 12syl5eleqr 2708 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ dom card)
149, 13elind 3798 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ (UFL ∩ dom card))
15 eqid 2622 . . . . . 6 (∏t𝑓) = (∏t𝑓)
16 eqid 2622 . . . . . 6 (∏t𝑓) = (∏t𝑓)
1715, 16ptcmpg 21861 . . . . 5 ((dom 𝑓 ∈ V ∧ 𝑓:dom 𝑓⟶Comp ∧ (∏t𝑓) ∈ (UFL ∩ dom card)) → (∏t𝑓) ∈ Comp)
183, 4, 14, 17syl3anc 1326 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ Comp)
1918ex 450 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
2019alrimiv 1855 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
21 fvex 6201 . . . . . . . . . 10 (𝑔𝑦) ∈ V
22 kelac2lem 37634 . . . . . . . . . 10 ((𝑔𝑦) ∈ V → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
2321, 22mp1i 13 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑦 ∈ dom 𝑔) → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
24 eqid 2622 . . . . . . . . 9 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))
2523, 24fmptd 6385 . . . . . . . 8 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom 𝑔⟶Comp)
26 ffdm 6062 . . . . . . . 8 ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom 𝑔⟶Comp → ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp ∧ dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) ⊆ dom 𝑔))
2725, 26syl 17 . . . . . . 7 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp ∧ dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) ⊆ dom 𝑔))
2827simpld 475 . . . . . 6 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp)
29 vex 3203 . . . . . . . . 9 𝑔 ∈ V
3029dmex 7099 . . . . . . . 8 dom 𝑔 ∈ V
3130mptex 6486 . . . . . . 7 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) ∈ V
32 id 22 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → 𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
33 dmeq 5324 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → dom 𝑓 = dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
3432, 33feq12d 6033 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (𝑓:dom 𝑓⟶Comp ↔ (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp))
35 fveq2 6191 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (∏t𝑓) = (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))))
3635eleq1d 2686 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((∏t𝑓) ∈ Comp ↔ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3734, 36imbi12d 334 . . . . . . 7 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) ↔ ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp)))
3831, 37spcv 3299 . . . . . 6 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3928, 38syl5com 31 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
40 fvex 6201 . . . . . . . 8 (𝑔𝑥) ∈ V
4140a1i 11 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
42 df-nel 2898 . . . . . . . . . . 11 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4342biimpi 206 . . . . . . . . . 10 (∅ ∉ ran 𝑔 → ¬ ∅ ∈ ran 𝑔)
4443ad2antlr 763 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
45 fvelrn 6352 . . . . . . . . . . . 12 ((Fun 𝑔𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
4645adantlr 751 . . . . . . . . . . 11 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
47 eleq1 2689 . . . . . . . . . . 11 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
4846, 47syl5ibcom 235 . . . . . . . . . 10 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
4948necon3bd 2808 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
5044, 49mpd 15 . . . . . . . 8 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
5150adantlr 751 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
52 fveq2 6191 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
5352unieqd 4446 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 (𝑔𝑦) = (𝑔𝑥))
5453pweqd 4163 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → 𝒫 (𝑔𝑦) = 𝒫 (𝑔𝑥))
5554sneqd 4189 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → {𝒫 (𝑔𝑦)} = {𝒫 (𝑔𝑥)})
5652, 55preq12d 4276 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {(𝑔𝑦), {𝒫 (𝑔𝑦)}} = {(𝑔𝑥), {𝒫 (𝑔𝑥)}})
5756fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) = (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5857cbvmptv 4750 . . . . . . . . . . 11 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) = (𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5958fveq2i 6194 . . . . . . . . . 10 (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}})))
6059eleq1i 2692 . . . . . . . . 9 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp ↔ (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
6160biimpi 206 . . . . . . . 8 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
6261adantl 482 . . . . . . 7 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
6341, 51, 62kelac2 37635 . . . . . 6 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
6463ex 450 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6539, 64syldc 48 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6665alrimiv 1855 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
67 dfac9 8958 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6866, 67sylibr 224 . 2 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → CHOICE)
6920, 68impbii 199 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wne 2794  wnel 2897  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179   cuni 4436  cmpt 4729  dom cdm 5114  ran crn 5115  Fun wfun 5882  wf 5884  cfv 5888  Xcixp 7908  cardccrd 8761  CHOICEwac 8938  topGenctg 16098  tcpt 16099  Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-wdom 8464  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-topgen 16104  df-pt 16105  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator