Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac21 Structured version   Visualization version   Unicode version

Theorem dfac21 37636
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
dfac21  |-  (CHOICE  <->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )

Proof of Theorem dfac21
Dummy variables  g 
y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7  |-  f  e. 
_V
21dmex 7099 . . . . . 6  |-  dom  f  e.  _V
32a1i 11 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  dom  f  e. 
_V )
4 simpr 477 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  f : dom  f --> Comp )
5 fvex 6201 . . . . . . . 8  |-  ( Xt_ `  f )  e.  _V
65uniex 6953 . . . . . . 7  |-  U. ( Xt_ `  f )  e. 
_V
7 acufl 21721 . . . . . . . 8  |-  (CHOICE  -> UFL  =  _V )
87adantr 481 . . . . . . 7  |-  ( (CHOICE  /\  f : dom  f --> Comp )  -> UFL  =  _V )
96, 8syl5eleqr 2708 . . . . . 6  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e. UFL )
10 simpl 473 . . . . . . . 8  |-  ( (CHOICE  /\  f : dom  f --> Comp )  -> CHOICE )
11 dfac10 8959 . . . . . . . 8  |-  (CHOICE  <->  dom  card  =  _V )
1210, 11sylib 208 . . . . . . 7  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  dom  card  =  _V )
136, 12syl5eleqr 2708 . . . . . 6  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e. 
dom  card )
149, 13elind 3798 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e.  (UFL  i^i  dom  card )
)
15 eqid 2622 . . . . . 6  |-  ( Xt_ `  f )  =  (
Xt_ `  f )
16 eqid 2622 . . . . . 6  |-  U. ( Xt_ `  f )  = 
U. ( Xt_ `  f
)
1715, 16ptcmpg 21861 . . . . 5  |-  ( ( dom  f  e.  _V  /\  f : dom  f --> Comp  /\  U. ( Xt_ `  f )  e.  (UFL 
i^i  dom  card ) )  -> 
( Xt_ `  f )  e.  Comp )
183, 4, 14, 17syl3anc 1326 . . . 4  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  ( Xt_ `  f )  e.  Comp )
1918ex 450 . . 3  |-  (CHOICE  ->  (
f : dom  f --> Comp  ->  ( Xt_ `  f
)  e.  Comp )
)
2019alrimiv 1855 . 2  |-  (CHOICE  ->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )
21 fvex 6201 . . . . . . . . . 10  |-  ( g `
 y )  e. 
_V
22 kelac2lem 37634 . . . . . . . . . 10  |-  ( ( g `  y )  e.  _V  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  e.  Comp )
2321, 22mp1i 13 . . . . . . . . 9  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  y  e.  dom  g )  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  e.  Comp )
24 eqid 2622 . . . . . . . . 9  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  =  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) )
2523, 24fmptd 6385 . . . . . . . 8  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  g --> Comp )
26 ffdm 6062 . . . . . . . 8  |-  ( ( y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  g --> Comp  ->  ( ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp  /\  dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  C_  dom  g ) )
2725, 26syl 17 . . . . . . 7  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp  /\  dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  C_  dom  g ) )
2827simpld 475 . . . . . 6  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) --> Comp )
29 vex 3203 . . . . . . . . 9  |-  g  e. 
_V
3029dmex 7099 . . . . . . . 8  |-  dom  g  e.  _V
3130mptex 6486 . . . . . . 7  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  e. 
_V
32 id 22 . . . . . . . . 9  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )
33 dmeq 5324 . . . . . . . . 9  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  dom  f  =  dom  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) ) )
3432, 33feq12d 6033 . . . . . . . 8  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
f : dom  f --> Comp  <-> 
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp ) )
35 fveq2 6191 . . . . . . . . 9  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  ( Xt_ `  f )  =  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) ) )
3635eleq1d 2686 . . . . . . . 8  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
( Xt_ `  f )  e.  Comp  <->  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp ) )
3734, 36imbi12d 334 . . . . . . 7  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) 
<->  ( ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) : dom  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) --> Comp  ->  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp ) ) )
3831, 37spcv 3299 . . . . . 6  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  (
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp 
->  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp ) )
3928, 38syl5com 31 . . . . 5  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  ( Xt_ `  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp ) )
40 fvex 6201 . . . . . . . 8  |-  ( g `
 x )  e. 
_V
4140a1i 11 . . . . . . 7  |-  ( ( ( ( Fun  g  /\  (/)  e/  ran  g
)  /\  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp )  /\  x  e.  dom  g )  ->  (
g `  x )  e.  _V )
42 df-nel 2898 . . . . . . . . . . 11  |-  ( (/)  e/ 
ran  g  <->  -.  (/)  e.  ran  g )
4342biimpi 206 . . . . . . . . . 10  |-  ( (/)  e/ 
ran  g  ->  -.  (/) 
e.  ran  g )
4443ad2antlr 763 . . . . . . . . 9  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  -.  (/) 
e.  ran  g )
45 fvelrn 6352 . . . . . . . . . . . 12  |-  ( ( Fun  g  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  ran  g
)
4645adantlr 751 . . . . . . . . . . 11  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
g `  x )  e.  ran  g )
47 eleq1 2689 . . . . . . . . . . 11  |-  ( ( g `  x )  =  (/)  ->  ( ( g `  x )  e.  ran  g  <->  (/)  e.  ran  g ) )
4846, 47syl5ibcom 235 . . . . . . . . . 10  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
( g `  x
)  =  (/)  ->  (/)  e.  ran  g ) )
4948necon3bd 2808 . . . . . . . . 9  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  ( -.  (/)  e.  ran  g  ->  ( g `  x
)  =/=  (/) ) )
5044, 49mpd 15 . . . . . . . 8  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
g `  x )  =/=  (/) )
5150adantlr 751 . . . . . . 7  |-  ( ( ( ( Fun  g  /\  (/)  e/  ran  g
)  /\  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp )  /\  x  e.  dom  g )  ->  (
g `  x )  =/=  (/) )
52 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
g `  y )  =  ( g `  x ) )
5352unieqd 4446 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  U. (
g `  y )  =  U. ( g `  x ) )
5453pweqd 4163 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ~P U. ( g `  y
)  =  ~P U. ( g `  x
) )
5554sneqd 4189 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  { ~P U. ( g `  y
) }  =  { ~P U. ( g `  x ) } )
5652, 55preq12d 4276 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  { ( g `  y ) ,  { ~P U. ( g `  y
) } }  =  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
)
5756fveq2d 6195 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  =  (
topGen `  { ( g `
 x ) ,  { ~P U. (
g `  x ) } } ) )
5857cbvmptv 4750 . . . . . . . . . . 11  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  =  ( x  e.  dom  g  |->  ( topGen `  {
( g `  x
) ,  { ~P U. ( g `  x
) } } ) )
5958fveq2i 6194 . . . . . . . . . 10  |-  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  =  (
Xt_ `  ( x  e.  dom  g  |->  ( topGen `  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
) ) )
6059eleq1i 2692 . . . . . . . . 9  |-  ( (
Xt_ `  ( y  e.  dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp 
<->  ( Xt_ `  (
x  e.  dom  g  |->  ( topGen `  { (
g `  x ) ,  { ~P U. (
g `  x ) } } ) ) )  e.  Comp )
6160biimpi 206 . . . . . . . 8  |-  ( (
Xt_ `  ( y  e.  dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp  ->  ( Xt_ `  (
x  e.  dom  g  |->  ( topGen `  { (
g `  x ) ,  { ~P U. (
g `  x ) } } ) ) )  e.  Comp )
6261adantl 482 . . . . . . 7  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp )  ->  ( Xt_ `  ( x  e. 
dom  g  |->  ( topGen `  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
) ) )  e. 
Comp )
6341, 51, 62kelac2 37635 . . . . . 6  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp )  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) )
6463ex 450 . . . . 5  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
( Xt_ `  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) ) )
6539, 64syldc 48 . . . 4  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  (
( Fun  g  /\  (/) 
e/  ran  g )  -> 
X_ x  e.  dom  g ( g `  x )  =/=  (/) ) )
6665alrimiv 1855 . . 3  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
67 dfac9 8958 . . 3  |-  (CHOICE  <->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
6866, 67sylibr 224 . 2  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  -> CHOICE )
6920, 68impbii 199 1  |-  (CHOICE  <->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888   X_cixp 7908   cardccrd 8761  CHOICEwac 8938   topGenctg 16098   Xt_cpt 16099   Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-wdom 8464  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-topgen 16104  df-pt 16105  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator