Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfvadd Structured version   Visualization version   GIF version

Theorem dvhfvadd 36380
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dvhfvadd.h 𝐻 = (LHyp‘𝐾)
dvhfvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhfvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhfvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhfvadd.f 𝐷 = (Scalar‘𝑈)
dvhfvadd.p = (+g𝐷)
dvhfvadd.a = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
dvhfvadd.s + = (+g𝑈)
Assertion
Ref Expression
dvhfvadd ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Distinct variable groups:   𝑓,𝑔,𝐸   𝑓,𝐻,𝑔   𝑓,𝐾,𝑔   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   + (𝑓,𝑔)   (𝑓,𝑔)   (𝑓,𝑔)   𝑈(𝑓,𝑔)

Proof of Theorem dvhfvadd
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhfvadd.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhfvadd.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhfvadd.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2622 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvhfvadd.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvhset 36370 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
76fveq2d 6195 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
8 dvhfvadd.p . . . . . . . . . 10 = (+g𝐷)
9 dvhfvadd.f . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑈)
101, 4, 5, 9dvhsca 36371 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
1110fveq2d 6195 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
128, 11syl5eq 2668 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
1312oveqd 6667 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
14133ad2ant1 1082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)))
15 xp2nd 7199 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
16 xp2nd 7199 . . . . . . . . . 10 (𝑔 ∈ (𝑇 × 𝐸) → (2nd𝑔) ∈ 𝐸)
1715, 16anim12i 590 . . . . . . . . 9 ((𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸))
18 eqid 2622 . . . . . . . . . 10 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
191, 2, 3, 4, 18erngplus 36091 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝑓) ∈ 𝐸 ∧ (2nd𝑔) ∈ 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2017, 19sylan2 491 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸))) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
21203impb 1260 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓)(+g‘((EDRing‘𝐾)‘𝑊))(2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2214, 21eqtrd 2656 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((2nd𝑓) (2nd𝑔)) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
2322opeq2d 4409 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)
2423mpt2eq3dva 6719 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩))
25 fvex 6201 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) ∈ V
262, 25eqeltri 2697 . . . . . . 7 𝑇 ∈ V
27 fvex 6201 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) ∈ V
283, 27eqeltri 2697 . . . . . . 7 𝐸 ∈ V
2926, 28xpex 6962 . . . . . 6 (𝑇 × 𝐸) ∈ V
3029, 29mpt2ex 7247 . . . . 5 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V
31 eqid 2622 . . . . . 6 ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
3231lmodplusg 16019 . . . . 5 ((𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) ∈ V → (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
3330, 32ax-mp 5 . . . 4 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
3424, 33syl6req 2673 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
357, 34eqtrd 2656 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝑈) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩))
36 dvhfvadd.s . 2 + = (+g𝑈)
37 dvhfvadd.a . 2 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
3835, 36, 373eqtr4g 2681 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {csn 4177  {ctp 4181  cop 4183  cmpt 4729   × cxp 5112  ccom 5118  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  TEndoctendo 36040  EDRingcedring 36041  DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-edring 36045  df-dvech 36368
This theorem is referenced by:  dvhvadd  36381
  Copyright terms: Public domain W3C validator