![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprchashprn2 | Structured version Visualization version GIF version |
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
Ref | Expression |
---|---|
elprchashprn2 | ⊢ (¬ 𝑀 ∈ V → ¬ (#‘{𝑀, 𝑁}) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4300 | . 2 ⊢ (¬ 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁}) | |
2 | hashsng 13159 | . . . 4 ⊢ (𝑁 ∈ V → (#‘{𝑁}) = 1) | |
3 | fveq2 6191 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = {𝑁} → (#‘{𝑀, 𝑁}) = (#‘{𝑁})) | |
4 | 3 | eqcomd 2628 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = {𝑁} → (#‘{𝑁}) = (#‘{𝑀, 𝑁})) |
5 | 4 | eqeq1d 2624 | . . . . . . 7 ⊢ ({𝑀, 𝑁} = {𝑁} → ((#‘{𝑁}) = 1 ↔ (#‘{𝑀, 𝑁}) = 1)) |
6 | 5 | biimpa 501 | . . . . . 6 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (#‘{𝑁}) = 1) → (#‘{𝑀, 𝑁}) = 1) |
7 | id 22 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 1 → (#‘{𝑀, 𝑁}) = 1) | |
8 | 1ne2 11240 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 1 → 1 ≠ 2) |
10 | 7, 9 | eqnetrd 2861 | . . . . . . 7 ⊢ ((#‘{𝑀, 𝑁}) = 1 → (#‘{𝑀, 𝑁}) ≠ 2) |
11 | 10 | neneqd 2799 | . . . . . 6 ⊢ ((#‘{𝑀, 𝑁}) = 1 → ¬ (#‘{𝑀, 𝑁}) = 2) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (#‘{𝑁}) = 1) → ¬ (#‘{𝑀, 𝑁}) = 2) |
13 | 12 | expcom 451 | . . . 4 ⊢ ((#‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
15 | snprc 4253 | . . . 4 ⊢ (¬ 𝑁 ∈ V ↔ {𝑁} = ∅) | |
16 | eqeq2 2633 | . . . . . . 7 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅)) | |
17 | 16 | biimpa 501 | . . . . . 6 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅) |
18 | hash0 13158 | . . . . . 6 ⊢ (#‘∅) = 0 | |
19 | fveq2 6191 | . . . . . . . . . 10 ⊢ ({𝑀, 𝑁} = ∅ → (#‘{𝑀, 𝑁}) = (#‘∅)) | |
20 | 19 | eqcomd 2628 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = ∅ → (#‘∅) = (#‘{𝑀, 𝑁})) |
21 | 20 | eqeq1d 2624 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = ∅ → ((#‘∅) = 0 ↔ (#‘{𝑀, 𝑁}) = 0)) |
22 | 21 | biimpa 501 | . . . . . . 7 ⊢ (({𝑀, 𝑁} = ∅ ∧ (#‘∅) = 0) → (#‘{𝑀, 𝑁}) = 0) |
23 | id 22 | . . . . . . . . 9 ⊢ ((#‘{𝑀, 𝑁}) = 0 → (#‘{𝑀, 𝑁}) = 0) | |
24 | 0ne2 11239 | . . . . . . . . . 10 ⊢ 0 ≠ 2 | |
25 | 24 | a1i 11 | . . . . . . . . 9 ⊢ ((#‘{𝑀, 𝑁}) = 0 → 0 ≠ 2) |
26 | 23, 25 | eqnetrd 2861 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 0 → (#‘{𝑀, 𝑁}) ≠ 2) |
27 | 26 | neneqd 2799 | . . . . . . 7 ⊢ ((#‘{𝑀, 𝑁}) = 0 → ¬ (#‘{𝑀, 𝑁}) = 2) |
28 | 22, 27 | syl 17 | . . . . . 6 ⊢ (({𝑀, 𝑁} = ∅ ∧ (#‘∅) = 0) → ¬ (#‘{𝑀, 𝑁}) = 2) |
29 | 17, 18, 28 | sylancl 694 | . . . . 5 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (#‘{𝑀, 𝑁}) = 2) |
30 | 29 | ex 450 | . . . 4 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
31 | 15, 30 | sylbi 207 | . . 3 ⊢ (¬ 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
32 | 14, 31 | pm2.61i 176 | . 2 ⊢ ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2) |
33 | 1, 32 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ V → ¬ (#‘{𝑀, 𝑁}) = 2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 {csn 4177 {cpr 4179 ‘cfv 5888 0cc0 9936 1c1 9937 2c2 11070 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: hashprb 13185 |
Copyright terms: Public domain | W3C validator |