MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Structured version   Visualization version   GIF version

Theorem expge0 12896
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))

Proof of Theorem expge0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . 5 (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴))
21elrab 3363 . . . 4 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 ssrab2 3687 . . . . . . 7 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3612 . . . . . 6 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ
6 breq2 4657 . . . . . . . 8 (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥))
76elrab 3363 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
8 breq2 4657 . . . . . . . 8 (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦))
98elrab 3363 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 remulcl 10021 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1110ad2ant2r 783 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
12 mulge0 10546 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦))
13 breq2 4657 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦)))
1413elrab 3363 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 0 ≤ (𝑥 · 𝑦)))
1511, 12, 14sylanbrc 698 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
167, 9, 15syl2anb 496 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
17 1re 10039 . . . . . . 7 1 ∈ ℝ
18 0le1 10551 . . . . . . 7 0 ≤ 1
19 breq2 4657 . . . . . . . 8 (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1))
2019elrab 3363 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1))
2117, 18, 20mpbir2an 955 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}
225, 16, 21expcllem 12871 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
23 breq2 4657 . . . . . . 7 (𝑧 = (𝐴𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴𝑁)))
2423elrab 3363 . . . . . 6 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 0 ≤ (𝐴𝑁)))
2524simprbi 480 . . . . 5 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴𝑁))
2622, 25syl 17 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
272, 26sylanbr 490 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
28273impa 1259 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
29283com23 1271 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  {crab 2916   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cle 10075  0cn0 11292  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  leexp2r  12918  leexp1a  12919  expge0d  13026  rpnnen2lem4  14946
  Copyright terms: Public domain W3C validator