![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6286 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ↦ cmpt 4729 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: isf32lem9 9183 axcc2lem 9258 caucvg 14409 ismre 16250 mrisval 16290 frmdup1 17401 frmdup2 17402 qusghm 17697 pmtrfval 17870 odf1 17979 vrgpfval 18179 dprdz 18429 dmdprdsplitlem 18436 dprd2dlem2 18439 dprd2dlem1 18440 dprd2da 18441 ablfac1a 18468 ablfac1b 18469 ablfac1eu 18472 ipdir 19984 ipass 19990 isphld 19999 istopon 20717 qustgpopn 21923 qustgplem 21924 tchcph 23036 cmvth 23754 mvth 23755 dvle 23770 lhop1 23777 dvfsumlem3 23791 pige3 24269 fsumdvdscom 24911 logfacbnd3 24948 dchrptlem1 24989 dchrptlem2 24990 lgsdchrval 25079 dchrisumlem3 25180 dchrisum0flblem1 25197 dchrisum0fno1 25200 dchrisum0lem1b 25204 dchrisum0lem2a 25206 dchrisum0lem2 25207 logsqvma2 25232 log2sumbnd 25233 sgnsv 29727 measdivcstOLD 30287 measdivcst 30288 mrexval 31398 mexval 31399 mdvval 31401 msubvrs 31457 mthmval 31472 f1omptsnlem 33183 upixp 33524 ismrer1 33637 uzmptshftfval 38545 amgmwlem 42548 amgmlemALT 42549 |
Copyright terms: Public domain | W3C validator |