MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   GIF version

Theorem odf1 17979
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
odf1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem odf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 odf1.3 . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 17559 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1265 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 846 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 odf1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 6385 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87adantr 481 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ⟶𝑋)
9 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
10 ovex 6678 . . . . . . . . 9 (𝑥 · 𝐴) ∈ V
119, 6, 10fvmpt3i 6287 . . . . . . . 8 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 𝐴))
12 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴))
1312, 6, 10fvmpt3i 6287 . . . . . . . 8 (𝑧 ∈ ℤ → (𝐹𝑧) = (𝑧 · 𝐴))
1411, 13eqeqan12d 2638 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
1514adantl 482 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
16 simplr 792 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂𝐴) = 0)
1716breq1d 4663 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ 0 ∥ (𝑦𝑧)))
18 odf1.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
19 eqid 2622 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
201, 18, 2, 19odcong 17968 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
21203expa 1265 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
2221adantlr 751 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
23 zsubcl 11419 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦𝑧) ∈ ℤ)
2423adantl 482 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦𝑧) ∈ ℤ)
25 0dvds 15002 . . . . . . . 8 ((𝑦𝑧) ∈ ℤ → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2624, 25syl 17 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2717, 22, 263bitr3d 298 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦𝑧) = 0))
28 zcn 11382 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
29 zcn 11382 . . . . . . . 8 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
30 subeq0 10307 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3128, 29, 30syl2an 494 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3231adantl 482 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3315, 27, 323bitrd 294 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ 𝑦 = 𝑧))
3433biimpd 219 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3534ralrimivva 2971 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
36 dff13 6512 . . 3 (𝐹:ℤ–1-1𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
378, 35, 36sylanbrc 698 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ–1-1𝑋)
381, 18, 2, 19odid 17957 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
391, 19, 2mulg0 17546 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = (0g𝐺))
4038, 39eqtr4d 2659 . . . . 5 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
4140ad2antlr 763 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
421, 18odcl 17955 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
4342ad2antlr 763 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℕ0)
4443nn0zd 11480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℤ)
45 oveq1 6657 . . . . . 6 (𝑥 = (𝑂𝐴) → (𝑥 · 𝐴) = ((𝑂𝐴) · 𝐴))
4645, 6, 10fvmpt3i 6287 . . . . 5 ((𝑂𝐴) ∈ ℤ → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
4744, 46syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
48 0zd 11389 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 0 ∈ ℤ)
49 oveq1 6657 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
5049, 6, 10fvmpt3i 6287 . . . . 5 (0 ∈ ℤ → (𝐹‘0) = (0 · 𝐴))
5148, 50syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘0) = (0 · 𝐴))
5241, 47, 513eqtr4d 2666 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = (𝐹‘0))
53 simpr 477 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 𝐹:ℤ–1-1𝑋)
54 f1fveq 6519 . . . 4 ((𝐹:ℤ–1-1𝑋 ∧ ((𝑂𝐴) ∈ ℤ ∧ 0 ∈ ℤ)) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5553, 44, 48, 54syl12anc 1324 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5652, 55mpbid 222 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) = 0)
5737, 56impbida 877 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  cmin 10266  0cn0 11292  cz 11377  cdvds 14983  Basecbs 15857  0gc0g 16100  Grpcgrp 17422  .gcmg 17540  odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948
This theorem is referenced by:  odinf  17980  odcl2  17982  zrhchr  30020
  Copyright terms: Public domain W3C validator