| Step | Hyp | Ref
| Expression |
| 1 | | amgmwlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | amgmwlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) |
| 3 | 2 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈
ℝ+) |
| 4 | | amgmwlem.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) |
| 5 | 4 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈
ℝ+) |
| 6 | 5 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈ ℝ) |
| 7 | 3, 6 | rpcxpcld 24476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)) ∈
ℝ+) |
| 8 | 7 | relogcld 24369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℝ) |
| 9 | 8 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℂ) |
| 10 | 1, 9 | gsumfsum 19813 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) = Σ𝑘 ∈ 𝐴 (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 11 | 9 | negnegd 10383 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 12 | 11 | sumeq2dv 14433 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = Σ𝑘 ∈ 𝐴 (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 13 | 8 | renegcld 10457 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℝ) |
| 14 | 13 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℂ) |
| 15 | 1, 14 | fsumneg 14519 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 16 | 3, 6 | logcxpd 24477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = ((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
| 17 | 16 | negeqd 10275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
| 18 | 17 | sumeq2dv 14433 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
| 19 | 18 | negeqd 10275 |
. . . . . . . 8
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
| 20 | 5 | rpcnd 11874 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈ ℂ) |
| 21 | 3 | relogcld 24369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℝ) |
| 22 | 21 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℂ) |
| 23 | 20, 22 | mulneg2d 10484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) = -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
| 24 | 23 | eqcomd 2628 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 25 | 24 | sumeq2dv 14433 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 26 | 25 | negeqd 10275 |
. . . . . . . 8
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 27 | 15, 19, 26 | 3eqtrd 2660 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 28 | 10, 12, 27 | 3eqtr2rd 2663 |
. . . . . 6
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))))) |
| 29 | | negex 10279 |
. . . . . . . . . . 11
⊢
-(log‘(𝐹‘𝑘)) ∈ V |
| 30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ V) |
| 31 | 4 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 = (𝑘 ∈ 𝐴 ↦ (𝑊‘𝑘))) |
| 32 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) |
| 33 | 1, 5, 30, 31, 32 | offval2 6914 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))))) |
| 34 | 33 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))))) |
| 35 | 22 | negcld 10379 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℂ) |
| 36 | 20, 35 | mulcld 10060 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) ∈ ℂ) |
| 37 | 1, 36 | gsumfsum 19813 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 38 | 34, 37 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 39 | 38 | negeqd 10275 |
. . . . . 6
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
| 40 | | relogf1o 24313 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
| 41 | | f1of 6137 |
. . . . . . . . . 10
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢ (log
↾
ℝ+):ℝ+⟶ℝ |
| 43 | | rpre 11839 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 44 | 43 | anim2i 593 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑥 ∈ ℝ+ ∧ 𝑦 ∈
ℝ)) |
| 45 | 44 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 ∈
ℝ+ ∧ 𝑦
∈ ℝ)) |
| 46 | | rpcxpcl 24422 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ)
→ (𝑥↑𝑐𝑦) ∈
ℝ+) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥↑𝑐𝑦) ∈
ℝ+) |
| 48 | | inidm 3822 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 49 | 47, 2, 4, 1, 1, 48 | off 6912 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘𝑓
↑𝑐𝑊):𝐴⟶ℝ+) |
| 50 | | fcompt 6400 |
. . . . . . . . 9
⊢ (((log
↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹 ∘𝑓
↑𝑐𝑊):𝐴⟶ℝ+) → ((log
↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)))) |
| 51 | 42, 49, 50 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)))) |
| 52 | 49 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘) ∈
ℝ+) |
| 53 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log
↾ ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘))) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((log ↾
ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘))) |
| 55 | 2 | ffnd 6046 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 56 | 4 | ffnd 6046 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 Fn 𝐴) |
| 57 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 58 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) = (𝑊‘𝑘)) |
| 59 | 55, 56, 1, 1, 48, 57, 58 | ofval 6906 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘) = ((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 61 | 54, 60 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((log ↾
ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
| 62 | 61 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘𝑓
↑𝑐𝑊)‘𝑘))) = (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) |
| 63 | 51, 62 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) |
| 64 | 63 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))))) |
| 65 | 28, 39, 64 | 3eqtr4d 2666 |
. . . . 5
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 66 | | amgmwlem.0 |
. . . . . . . . . . . . 13
⊢ 𝑀 =
(mulGrp‘ℂfld) |
| 67 | 66 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (𝑀 ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
| 68 | 67 | rpmsubg 19810 |
. . . . . . . . . . 11
⊢
ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖
{0}))) |
| 69 | | subgsubm 17616 |
. . . . . . . . . . 11
⊢
(ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖ {0})))
→ ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0})))) |
| 70 | 68, 69 | ax-mp 5 |
. . . . . . . . . 10
⊢
ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0}))) |
| 71 | | cnring 19768 |
. . . . . . . . . . 11
⊢
ℂfld ∈ Ring |
| 72 | | cnfldbas 19750 |
. . . . . . . . . . . . 13
⊢ ℂ =
(Base‘ℂfld) |
| 73 | | cnfld0 19770 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘ℂfld) |
| 74 | | cndrng 19775 |
. . . . . . . . . . . . 13
⊢
ℂfld ∈ DivRing |
| 75 | 72, 73, 74 | drngui 18753 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
| 76 | 75, 66 | unitsubm 18670 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ Ring → (ℂ ∖ {0}) ∈
(SubMnd‘𝑀)) |
| 77 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑀 ↾s (ℂ
∖ {0})) = (𝑀
↾s (ℂ ∖ {0})) |
| 78 | 77 | subsubm 17357 |
. . . . . . . . . . 11
⊢ ((ℂ
∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈
(SubMnd‘(𝑀
↾s (ℂ ∖ {0}))) ↔ (ℝ+ ∈
(SubMnd‘𝑀) ∧
ℝ+ ⊆ (ℂ ∖ {0})))) |
| 79 | 71, 76, 78 | mp2b 10 |
. . . . . . . . . 10
⊢
(ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖ {0})))
↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0}))) |
| 80 | 70, 79 | mpbi 220 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0})) |
| 81 | 80 | simpli 474 |
. . . . . . . 8
⊢
ℝ+ ∈ (SubMnd‘𝑀) |
| 82 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑀 ↾s
ℝ+) = (𝑀
↾s ℝ+) |
| 83 | 82 | submbas 17355 |
. . . . . . . 8
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ =
(Base‘(𝑀
↾s ℝ+))) |
| 84 | 81, 83 | ax-mp 5 |
. . . . . . 7
⊢
ℝ+ = (Base‘(𝑀 ↾s
ℝ+)) |
| 85 | | cnfld1 19771 |
. . . . . . . . 9
⊢ 1 =
(1r‘ℂfld) |
| 86 | 66, 85 | ringidval 18503 |
. . . . . . . 8
⊢ 1 =
(0g‘𝑀) |
| 87 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 88 | 82, 87 | subm0 17356 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+))) |
| 89 | 81, 88 | ax-mp 5 |
. . . . . . . 8
⊢
(0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+)) |
| 90 | 86, 89 | eqtri 2644 |
. . . . . . 7
⊢ 1 =
(0g‘(𝑀
↾s ℝ+)) |
| 91 | | cncrng 19767 |
. . . . . . . . 9
⊢
ℂfld ∈ CRing |
| 92 | 66 | crngmgp 18555 |
. . . . . . . . 9
⊢
(ℂfld ∈ CRing → 𝑀 ∈ CMnd) |
| 93 | 91, 92 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 94 | 82 | submmnd 17354 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (𝑀 ↾s ℝ+)
∈ Mnd) |
| 95 | 81, 94 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ Mnd) |
| 96 | 82 | subcmn 18242 |
. . . . . . . 8
⊢ ((𝑀 ∈ CMnd ∧ (𝑀 ↾s
ℝ+) ∈ Mnd) → (𝑀 ↾s ℝ+)
∈ CMnd) |
| 97 | 93, 95, 96 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ CMnd) |
| 98 | | resubdrg 19954 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
| 99 | 98 | simpli 474 |
. . . . . . . . 9
⊢ ℝ
∈ (SubRing‘ℂfld) |
| 100 | | df-refld 19951 |
. . . . . . . . . 10
⊢
ℝfld = (ℂfld ↾s
ℝ) |
| 101 | 100 | subrgring 18783 |
. . . . . . . . 9
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝfld
∈ Ring) |
| 102 | 99, 101 | ax-mp 5 |
. . . . . . . 8
⊢
ℝfld ∈ Ring |
| 103 | | ringmnd 18556 |
. . . . . . . 8
⊢
(ℝfld ∈ Ring → ℝfld ∈
Mnd) |
| 104 | 102, 103 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ℝfld
∈ Mnd) |
| 105 | 66 | oveq1i 6660 |
. . . . . . . . . 10
⊢ (𝑀 ↾s
ℝ+) = ((mulGrp‘ℂfld)
↾s ℝ+) |
| 106 | 105 | reloggim 24345 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) |
| 107 | | gimghm 17706 |
. . . . . . . . 9
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) GrpHom ℝfld)) |
| 108 | 106, 107 | ax-mp 5 |
. . . . . . . 8
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) |
| 109 | | ghmmhm 17670 |
. . . . . . . 8
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) MndHom ℝfld)) |
| 110 | 108, 109 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (log ↾
ℝ+) ∈ ((𝑀 ↾s ℝ+)
MndHom ℝfld)) |
| 111 | | 1red 10055 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 112 | 49, 1, 111 | fdmfifsupp 8285 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘𝑓
↑𝑐𝑊) finSupp 1) |
| 113 | 84, 90, 97, 104, 1, 110, 49, 112 | gsummhm 18338 |
. . . . . 6
⊢ (𝜑 → (ℝfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊))) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 114 | | subrgsubg 18786 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝ ∈
(SubGrp‘ℂfld)) |
| 115 | 99, 114 | ax-mp 5 |
. . . . . . . . 9
⊢ ℝ
∈ (SubGrp‘ℂfld) |
| 116 | | subgsubm 17616 |
. . . . . . . . 9
⊢ (ℝ
∈ (SubGrp‘ℂfld) → ℝ ∈
(SubMnd‘ℂfld)) |
| 117 | 115, 116 | ax-mp 5 |
. . . . . . . 8
⊢ ℝ
∈ (SubMnd‘ℂfld) |
| 118 | 117 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
(SubMnd‘ℂfld)) |
| 119 | 40, 41 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (log ↾
ℝ+):ℝ+⟶ℝ) |
| 120 | | fco 6058 |
. . . . . . . 8
⊢ (((log
↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹 ∘𝑓
↑𝑐𝑊):𝐴⟶ℝ+) → ((log
↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)):𝐴⟶ℝ) |
| 121 | 119, 49, 120 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)):𝐴⟶ℝ) |
| 122 | 1, 118, 121, 100 | gsumsubm 17373 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊))) = (ℝfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 123 | 81 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+ ∈
(SubMnd‘𝑀)) |
| 124 | 1, 123, 49, 82 | gsumsubm 17373 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)) = ((𝑀 ↾s ℝ+)
Σg (𝐹 ∘𝑓
↑𝑐𝑊))) |
| 125 | 124 | fveq2d 6195 |
. . . . . 6
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊))) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 126 | 113, 122,
125 | 3eqtr4d 2666 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘𝑓
↑𝑐𝑊))) = ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 127 | 86, 93, 1, 123, 49, 112 | gsumsubmcl 18319 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)) ∈
ℝ+) |
| 128 | | fvres 6207 |
. . . . . 6
⊢ ((𝑀 Σg
(𝐹
∘𝑓 ↑𝑐𝑊)) ∈ ℝ+ → ((log
↾ ℝ+)‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊))) = (log‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 129 | 127, 128 | syl 17 |
. . . . 5
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊))) = (log‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 130 | 65, 126, 129 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (log‘(𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) |
| 131 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑥 ∈
ℝ+) |
| 132 | 131 | rpcnd 11874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑥 ∈
ℂ) |
| 133 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑦 ∈
ℝ+) |
| 134 | 133 | rpcnd 11874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑦 ∈
ℂ) |
| 135 | 132, 134 | mulcomd 10061 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| 136 | 1, 4, 2, 135 | caofcom 6929 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 ∘𝑓 · 𝐹) = (𝐹 ∘𝑓 · 𝑊)) |
| 137 | 136 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) = (ℂfld
Σg (𝐹 ∘𝑓 · 𝑊))) |
| 138 | 2 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 139 | 1, 5, 3, 31, 138 | offval2 6914 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑊 ∘𝑓 · 𝐹) = (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘)))) |
| 140 | 139 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘))))) |
| 141 | 5, 3 | rpmulcld 11888 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈
ℝ+) |
| 142 | 141 | rpcnd 11874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈ ℂ) |
| 143 | 1, 142 | gsumfsum 19813 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘))) |
| 144 | 140, 143 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘))) |
| 145 | | amgmwlem.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 146 | 1, 145, 141 | fsumrpcl 14468 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈
ℝ+) |
| 147 | 144, 146 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) ∈
ℝ+) |
| 148 | 137, 147 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘𝑓 · 𝑊)) ∈
ℝ+) |
| 149 | 148 | relogcld 24369 |
. . . . 5
⊢ (𝜑 →
(log‘(ℂfld Σg (𝐹 ∘𝑓 · 𝑊))) ∈
ℝ) |
| 150 | | ringcmn 18581 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
| 151 | 71, 150 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → ℂfld
∈ CMnd) |
| 152 | | remulcl 10021 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 153 | 152 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
| 154 | | rpssre 11843 |
. . . . . . . 8
⊢
ℝ+ ⊆ ℝ |
| 155 | | fss 6056 |
. . . . . . . 8
⊢ ((𝑊:𝐴⟶ℝ+ ∧
ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ) |
| 156 | 4, 154, 155 | sylancl 694 |
. . . . . . 7
⊢ (𝜑 → 𝑊:𝐴⟶ℝ) |
| 157 | 21 | renegcld 10457 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℝ) |
| 158 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))) |
| 159 | 157, 158 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))):𝐴⟶ℝ) |
| 160 | 153, 156,
159, 1, 1, 48 | off 6912 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))):𝐴⟶ℝ) |
| 161 | | 0red 10041 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
| 162 | 160, 1, 161 | fdmfifsupp 8285 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) finSupp 0) |
| 163 | 73, 151, 1, 118, 160, 162 | gsumsubmcl 18319 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) ∈ ℝ) |
| 164 | 154 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+
⊆ ℝ) |
| 165 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈
ℝ+) |
| 166 | 165 | relogcld 24369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(log‘𝑤) ∈
ℝ) |
| 167 | 166 | renegcld 10457 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
-(log‘𝑤) ∈
ℝ) |
| 168 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ+
↦ -(log‘𝑤)) =
(𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) |
| 169 | 167, 168 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)):ℝ+⟶ℝ) |
| 170 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑎 ∈ ℝ+) |
| 171 | | ioorp 12251 |
. . . . . . . . . . . 12
⊢
(0(,)+∞) = ℝ+ |
| 172 | 170, 171 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑎 ∈ (0(,)+∞)) |
| 173 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑏 ∈ ℝ+) |
| 174 | 173, 171 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑏 ∈ (0(,)+∞)) |
| 175 | | iccssioo2 12246 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (0(,)+∞) ∧
𝑏 ∈ (0(,)+∞))
→ (𝑎[,]𝑏) ⊆
(0(,)+∞)) |
| 176 | 172, 174,
175 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞)) |
| 177 | 176, 171 | syl6sseq 3651 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆
ℝ+) |
| 178 | 177 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎[,]𝑏) ⊆
ℝ+) |
| 179 | | ioossico 12262 |
. . . . . . . . . 10
⊢
(0(,)+∞) ⊆ (0[,)+∞) |
| 180 | 171, 179 | eqsstr3i 3636 |
. . . . . . . . 9
⊢
ℝ+ ⊆ (0[,)+∞) |
| 181 | | fss 6056 |
. . . . . . . . 9
⊢ ((𝑊:𝐴⟶ℝ+ ∧
ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞)) |
| 182 | 4, 180, 181 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → 𝑊:𝐴⟶(0[,)+∞)) |
| 183 | | 0lt1 10550 |
. . . . . . . . 9
⊢ 0 <
1 |
| 184 | | amgmwlem.5 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg 𝑊) = 1) |
| 185 | 183, 184 | syl5breqr 4691 |
. . . . . . . 8
⊢ (𝜑 → 0 <
(ℂfld Σg 𝑊)) |
| 186 | | logccv 24409 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+ ∧ 𝑥
< 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 187 | 186 | 3adant1 1079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 188 | | elioore 12205 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (0(,)1) → 𝑡 ∈
ℝ) |
| 189 | 188 | 3ad2ant3 1084 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ) |
| 190 | | simp21 1094 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+) |
| 191 | 190 | relogcld 24369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℝ) |
| 192 | 189, 191 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ) |
| 193 | | 1red 10055 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → 1 ∈
ℝ) |
| 194 | 193, 188 | resubcld 10458 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (0(,)1) → (1
− 𝑡) ∈
ℝ) |
| 195 | 194 | 3ad2ant3 1084 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℝ) |
| 196 | | simp22 1095 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+) |
| 197 | 196 | relogcld 24369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℝ) |
| 198 | 195, 197 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℝ) |
| 199 | 192, 198 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ) |
| 200 | | eliooord 12233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → (0 <
𝑡 ∧ 𝑡 < 1)) |
| 201 | 200 | simpld 475 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (0(,)1) → 0 <
𝑡) |
| 202 | 188, 201 | elrpd 11869 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → 𝑡 ∈
ℝ+) |
| 203 | 202 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+) |
| 204 | 203, 190 | rpmulcld 11888 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈
ℝ+) |
| 205 | | 0red 10041 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → 0 ∈
ℝ) |
| 206 | 200 | simprd 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ (0(,)1) → 𝑡 < 1) |
| 207 | | 1m0e1 11131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
− 0) = 1 |
| 208 | 206, 207 | syl6breqr 4695 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → 𝑡 < (1 −
0)) |
| 209 | 188, 193,
205, 208 | ltsub13d 10633 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (0(,)1) → 0 < (1
− 𝑡)) |
| 210 | 194, 209 | elrpd 11869 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → (1
− 𝑡) ∈
ℝ+) |
| 211 | 210 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℝ+) |
| 212 | 211, 196 | rpmulcld 11888 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈
ℝ+) |
| 213 | | rpaddcl 11854 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1
− 𝑡) · 𝑦) ∈ ℝ+)
→ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
| 214 | 204, 212,
213 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
| 215 | 214 | relogcld 24369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ) |
| 216 | 199, 215 | ltnegd 10605 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))) |
| 217 | 187, 216 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
| 218 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) = (𝑤 ∈ ℝ+
↦ -(log‘𝑤))) |
| 219 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 220 | 219 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 221 | 220 | negeqd 10275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 222 | | negex 10279 |
. . . . . . . . . . . 12
⊢
-(log‘((𝑡
· 𝑥) + ((1 −
𝑡) · 𝑦))) ∈ V |
| 223 | 222 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V) |
| 224 | 218, 221,
214, 223 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
| 225 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥)) |
| 226 | 225 | negeqd 10275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥)) |
| 227 | | negex 10279 |
. . . . . . . . . . . . . . . 16
⊢
-(log‘𝑤)
∈ V |
| 228 | 226, 168,
227 | fvmpt3i 6287 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
| 229 | 190, 228 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
| 230 | 229 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥))) |
| 231 | 189 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ) |
| 232 | 191 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℂ) |
| 233 | 231, 232 | mulneg2d 10484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥))) |
| 234 | 230, 233 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥))) |
| 235 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦)) |
| 236 | 235 | negeqd 10275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦)) |
| 237 | 236, 168,
227 | fvmpt3i 6287 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
| 238 | 196, 237 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
| 239 | 238 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦))) |
| 240 | 211 | rpcnd 11874 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℂ) |
| 241 | 197 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℂ) |
| 242 | 240, 241 | mulneg2d 10484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
| 243 | 239, 242 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
| 244 | 234, 243 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
| 245 | 192 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ) |
| 246 | 198 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℂ) |
| 247 | 245, 246 | negdid 10405 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
| 248 | 244, 247 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
| 249 | 217, 224,
248 | 3brtr4d 4685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)))) |
| 250 | 164, 169,
178, 249 | scvxcvx 24712 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+
∧ 𝑠 ∈ (0[,]1)))
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑣)))) |
| 251 | 164, 169,
178, 1, 182, 2, 185, 250 | jensen 24715 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊))) ≤ ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg 𝑊)))) |
| 252 | 251 | simprd 479 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊))) ≤ ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg 𝑊))) |
| 253 | 184 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊)) = ((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / 1)) |
| 254 | 253 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / 1))) |
| 255 | 147 | rpcnd 11874 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) ∈
ℂ) |
| 256 | 255 | div1d 10793 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / 1) = (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹))) |
| 257 | 256 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)))) |
| 258 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑤 = (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) → (log‘𝑤) =
(log‘(ℂfld Σg (𝑊 ∘𝑓 · 𝐹)))) |
| 259 | 258 | negeqd 10275 |
. . . . . . . . . 10
⊢ (𝑤 = (ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) → -(log‘𝑤) =
-(log‘(ℂfld Σg (𝑊 ∘𝑓
· 𝐹)))) |
| 260 | 259, 168,
227 | fvmpt3i 6287 |
. . . . . . . . 9
⊢
((ℂfld Σg (𝑊 ∘𝑓 · 𝐹)) ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘𝑓 · 𝐹))) =
-(log‘(ℂfld Σg (𝑊 ∘𝑓
· 𝐹)))) |
| 261 | 147, 260 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘𝑓 · 𝐹))) =
-(log‘(ℂfld Σg (𝑊 ∘𝑓
· 𝐹)))) |
| 262 | 137 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 →
(log‘(ℂfld Σg (𝑊 ∘𝑓 · 𝐹))) =
(log‘(ℂfld Σg (𝐹 ∘𝑓 · 𝑊)))) |
| 263 | 262 | negeqd 10275 |
. . . . . . . 8
⊢ (𝜑 →
-(log‘(ℂfld Σg (𝑊 ∘𝑓
· 𝐹))) =
-(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊)))) |
| 264 | 261, 263 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘𝑓 · 𝐹))) =
-(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊)))) |
| 265 | 254, 257,
264 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘𝑓 · 𝐹)) / (ℂfld
Σg 𝑊))) = -(log‘(ℂfld
Σg (𝐹 ∘𝑓 · 𝑊)))) |
| 266 | 184 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg 𝑊)) = ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1)) |
| 267 | | ringmnd 18556 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
| 268 | 71, 267 | ax-mp 5 |
. . . . . . . . . 10
⊢
ℂfld ∈ Mnd |
| 269 | 72 | submid 17351 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Mnd → ℂ ∈
(SubMnd‘ℂfld)) |
| 270 | 268, 269 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(SubMnd‘ℂfld)) |
| 271 | | mulcl 10020 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 272 | 271 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 273 | | rpcn 11841 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 274 | 273 | ssriv 3607 |
. . . . . . . . . . . 12
⊢
ℝ+ ⊆ ℂ |
| 275 | 274 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ+
⊆ ℂ) |
| 276 | 4, 275 | fssd 6057 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊:𝐴⟶ℂ) |
| 277 | 166 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(log‘𝑤) ∈
ℂ) |
| 278 | 277 | negcld 10379 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
-(log‘𝑤) ∈
ℂ) |
| 279 | 278, 168 | fmptd 6385 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)):ℝ+⟶ℂ) |
| 280 | | fco 6058 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ℝ+
↦ -(log‘𝑤)):ℝ+⟶ℂ ∧
𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹):𝐴⟶ℂ) |
| 281 | 279, 2, 280 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) ∘
𝐹):𝐴⟶ℂ) |
| 282 | 272, 276,
281, 1, 1, 48 | off 6912 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ) |
| 283 | 282, 1, 161 | fdmfifsupp 8285 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0) |
| 284 | 73, 151, 1, 270, 282, 283 | gsumsubmcl 18319 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ) |
| 285 | 284 | div1d 10793 |
. . . . . . 7
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)))) |
| 286 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) = (𝑤 ∈ ℝ+
↦ -(log‘𝑤))) |
| 287 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹‘𝑘) → (log‘𝑤) = (log‘(𝐹‘𝑘))) |
| 288 | 287 | negeqd 10275 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐹‘𝑘) → -(log‘𝑤) = -(log‘(𝐹‘𝑘))) |
| 289 | 3, 138, 286, 288 | fmptco 6396 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) ∘
𝐹) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) |
| 290 | 289 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) |
| 291 | 290 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
| 292 | 266, 285,
291 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘𝑓 ·
((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg 𝑊)) = (ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
| 293 | 252, 265,
292 | 3brtr3d 4684 |
. . . . 5
⊢ (𝜑 →
-(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊))) ≤
(ℂfld Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
| 294 | 149, 163,
293 | lenegcon1d 10609 |
. . . 4
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘𝑓 · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) ≤ (log‘(ℂfld
Σg (𝐹 ∘𝑓 · 𝑊)))) |
| 295 | 130, 294 | eqbrtrrd 4677 |
. . 3
⊢ (𝜑 → (log‘(𝑀 Σg
(𝐹
∘𝑓 ↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘𝑓 · 𝑊)))) |
| 296 | 127 | relogcld 24369 |
. . . 4
⊢ (𝜑 → (log‘(𝑀 Σg
(𝐹
∘𝑓 ↑𝑐𝑊))) ∈ ℝ) |
| 297 | | efle 14848 |
. . . 4
⊢
(((log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊))) ∈ ℝ ∧
(log‘(ℂfld Σg (𝐹 ∘𝑓 · 𝑊))) ∈ ℝ) →
((log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘𝑓 · 𝑊))) ↔
(exp‘(log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊)))))) |
| 298 | 296, 149,
297 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((log‘(𝑀 Σg
(𝐹
∘𝑓 ↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘𝑓 · 𝑊))) ↔
(exp‘(log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊)))))) |
| 299 | 295, 298 | mpbid 222 |
. 2
⊢ (𝜑 →
(exp‘(log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊))))) |
| 300 | 127 | reeflogd 24370 |
. . 3
⊢ (𝜑 →
(exp‘(log‘(𝑀
Σg (𝐹 ∘𝑓
↑𝑐𝑊)))) = (𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊))) |
| 301 | 300 | eqcomd 2628 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)) = (exp‘(log‘(𝑀 Σg
(𝐹
∘𝑓 ↑𝑐𝑊))))) |
| 302 | 148 | reeflogd 24370 |
. . 3
⊢ (𝜑 →
(exp‘(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊)))) =
(ℂfld Σg (𝐹 ∘𝑓 · 𝑊))) |
| 303 | 302 | eqcomd 2628 |
. 2
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘𝑓 · 𝑊)) =
(exp‘(log‘(ℂfld Σg (𝐹 ∘𝑓
· 𝑊))))) |
| 304 | 299, 301,
303 | 3brtr4d 4685 |
1
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘𝑓
↑𝑐𝑊)) ≤ (ℂfld
Σg (𝐹 ∘𝑓 · 𝑊))) |