| Step | Hyp | Ref
| Expression |
| 1 | | mvth.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | mvth.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | mvth.lt |
. . 3
⊢ (𝜑 → 𝐴 < 𝐵) |
| 4 | | mvth.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 5 | | mptresid 5456 |
. . . 4
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵)) |
| 6 | | iccssre 12255 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 7 | 1, 2, 6 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 8 | | ax-resscn 9993 |
. . . . 5
⊢ ℝ
⊆ ℂ |
| 9 | | cncfmptid 22715 |
. . . . 5
⊢ (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆
ℂ) → (𝑧 ∈
(𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 10 | 7, 8, 9 | sylancl 694 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 11 | 5, 10 | syl5eqelr 2706 |
. . 3
⊢ (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 12 | | mvth.d |
. . 3
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 13 | 5 | oveq2i 6661 |
. . . . . 6
⊢ (ℝ
D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵))) |
| 14 | | reelprrecn 10028 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
| 15 | 14 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 16 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
| 17 | 16 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
| 18 | | 1red 10055 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 1 ∈
ℝ) |
| 19 | 15 | dvmptid 23720 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1)) |
| 20 | | eqid 2622 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 21 | 20 | tgioo2 22606 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 22 | | iccntr 22624 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 23 | 1, 2, 22 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 24 | 15, 17, 18, 19, 7, 21, 20, 23 | dvmptres2 23725 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 25 | 13, 24 | syl5eqr 2670 |
. . . . 5
⊢ (𝜑 → (ℝ D ( I ↾
(𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 26 | 25 | dmeqd 5326 |
. . . 4
⊢ (𝜑 → dom (ℝ D ( I ↾
(𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 27 | | 1ex 10035 |
. . . . 5
⊢ 1 ∈
V |
| 28 | | eqid 2622 |
. . . . 5
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) |
| 29 | 27, 28 | dmmpti 6023 |
. . . 4
⊢ dom
(𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵) |
| 30 | 26, 29 | syl6eq 2672 |
. . 3
⊢ (𝜑 → dom (ℝ D ( I ↾
(𝐴[,]𝐵))) = (𝐴(,)𝐵)) |
| 31 | 1, 2, 3, 4, 11, 12, 30 | cmvth 23754 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥))) |
| 32 | 1 | rexrd 10089 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 33 | 2 | rexrd 10089 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 34 | 1, 2, 3 | ltled 10185 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 35 | | ubicc2 12289 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 36 | 32, 33, 34, 35 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 37 | | fvresi 6439 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵) |
| 39 | | lbicc2 12288 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 40 | 32, 33, 34, 39 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 41 | | fvresi 6439 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴) |
| 43 | 38, 42 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵 − 𝐴)) |
| 44 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵 − 𝐴)) |
| 45 | 44 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥))) |
| 46 | 25 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D ( I ↾
(𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥)) |
| 47 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → 1 = 1) |
| 48 | 47, 28, 27 | fvmpt3i 6287 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1) |
| 49 | 46, 48 | sylan9eq 2676 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1) |
| 50 | 49 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · 1)) |
| 51 | | cncff 22696 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 52 | 4, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 53 | 52, 36 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
| 54 | 52, 40 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 55 | 53, 54 | resubcld 10458 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℝ) |
| 56 | 55 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℂ) |
| 57 | 56 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℂ) |
| 58 | 57 | mulid1d 10057 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · 1) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 59 | 50, 58 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 60 | 45, 59 | eqeq12d 2637 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
| 61 | 2, 1 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 62 | 61 | recnd 10068 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 63 | 62 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐵 − 𝐴) ∈ ℂ) |
| 64 | | dvf 23671 |
. . . . . . . 8
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
| 65 | 12 | feq2d 6031 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℂ)) |
| 66 | 64, 65 | mpbii 223 |
. . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 67 | 66 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 68 | 1, 2 | posdifd 10614 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 69 | 3, 68 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 70 | 69 | gt0ne0d 10592 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
| 71 | 70 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐵 − 𝐴) ≠ 0) |
| 72 | 57, 63, 67, 71 | divmuld 10823 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
| 73 | 60, 72 | bitr4d 271 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥))) |
| 74 | | eqcom 2629 |
. . . 4
⊢ ((((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥))) |
| 75 | | eqcom 2629 |
. . . 4
⊢
(((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) ↔ (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥)) |
| 76 | 73, 74, 75 | 3bitr4g 303 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)))) |
| 77 | 76 | rexbidva 3049 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)))) |
| 78 | 31, 77 | mpbid 222 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴))) |