Proof of Theorem dchrisum0lem1b
| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin) |
| 2 | | ssun2 3777 |
. . . . . . 7
⊢
(((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) |
| 3 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 4 | 3 | rprege0d 11879 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
| 5 | | flge0nn0 12621 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘𝑥) ∈
ℕ0) |
| 7 | | nn0p1nn 11332 |
. . . . . . . . . . 11
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘𝑥) + 1)
∈ ℕ) |
| 9 | 8 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ ℕ) |
| 10 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 11 | 9, 10 | syl6eleq 2711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ (ℤ≥‘1)) |
| 12 | | dchrisum0lem1a 25175 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥)))) |
| 13 | 12 | simprd 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) |
| 14 | | fzsplit2 12366 |
. . . . . . . 8
⊢
((((⌊‘𝑥)
+ 1) ∈ (ℤ≥‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
| 15 | 11, 13, 14 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
| 16 | 2, 15 | syl5sseqr 3654 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 17 | 16 | sselda 3603 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 18 | | rpvmasum2.g |
. . . . . . 7
⊢ 𝐺 = (DChr‘𝑁) |
| 19 | | rpvmasum.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 20 | | rpvmasum2.d |
. . . . . . 7
⊢ 𝐷 = (Base‘𝐺) |
| 21 | | rpvmasum.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 22 | | rpvmasum2.w |
. . . . . . . . . . 11
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
| 23 | | ssrab2 3687 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 }) |
| 24 | 22, 23 | eqsstri 3635 |
. . . . . . . . . 10
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
| 25 | | dchrisum0.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 26 | 24, 25 | sseldi 3601 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
| 27 | 26 | eldifad 3586 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 28 | 27 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋 ∈ 𝐷) |
| 29 | | elfzelz 12342 |
. . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ) |
| 30 | 29 | adantl 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ) |
| 31 | 18, 19, 20, 21, 28, 30 | dchrzrhcl 24970 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 32 | | elfznn 12370 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ) |
| 33 | 32 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ) |
| 34 | 33 | nnrpd 11870 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+) |
| 35 | 34 | rpsqrtcld 14150 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈
ℝ+) |
| 36 | 35 | rpcnd 11874 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ) |
| 37 | 35 | rpne0d 11877 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0) |
| 38 | 31, 36, 37 | divcld 10801 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 39 | 17, 38 | syldan 487 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 40 | 1, 39 | fsumcl 14464 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 41 | 40 | abscld 14175 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ∈ ℝ) |
| 42 | | 1zzd 11408 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 43 | 27 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 ∈ 𝐷) |
| 44 | | nnz 11399 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 45 | 44 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
| 46 | 18, 19, 20, 21, 43, 45 | dchrzrhcl 24970 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 47 | | nnrp 11842 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ+) |
| 48 | 47 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
| 49 | 48 | rpsqrtcld 14150 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (√‘𝑚) ∈
ℝ+) |
| 50 | 49 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (√‘𝑚) ∈
ℂ) |
| 51 | 49 | rpne0d 11877 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0) |
| 52 | 46, 50, 51 | divcld 10801 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 53 | | dchrisum0lem1.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
| 54 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑚 → (𝐿‘𝑎) = (𝐿‘𝑚)) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑚 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑚))) |
| 56 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚)) |
| 57 | 55, 56 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑚 → ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 58 | 57 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 59 | 53, 58 | eqtri 2644 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 60 | 52, 59 | fmptd 6385 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
| 61 | 60 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) ∈ ℂ) |
| 62 | 10, 42, 61 | serf 12829 |
. . . . . . 7
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
| 63 | 62 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ seq1( + , 𝐹):ℕ⟶ℂ) |
| 64 | 3 | rpregt0d 11878 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 <
𝑥)) |
| 65 | 64 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
| 66 | 65 | simpld 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
| 67 | | 1red 10055 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
| 68 | | elfznn 12370 |
. . . . . . . . . . 11
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
| 69 | 68 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
| 70 | 69 | nnred 11035 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ) |
| 71 | 69 | nnge1d 11063 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ 𝑑) |
| 72 | 3 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 73 | | fznnfl 12661 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
| 75 | 74 | simplbda 654 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ≤ 𝑥) |
| 76 | 67, 70, 66, 71, 75 | letrd 10194 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ 𝑥) |
| 77 | | flge1nn 12622 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ) |
| 78 | 66, 76, 77 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘𝑥)
∈ ℕ) |
| 79 | | eluznn 11758 |
. . . . . . 7
⊢
(((⌊‘𝑥)
∈ ℕ ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ) |
| 80 | 78, 13, 79 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ) |
| 81 | 63, 80 | ffvelrnd 6360 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) ∈ ℂ) |
| 82 | | dchrisum0.s |
. . . . . . 7
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
| 83 | | climcl 14230 |
. . . . . . 7
⊢ (seq1( +
, 𝐹) ⇝ 𝑆 → 𝑆 ∈ ℂ) |
| 84 | 82, 83 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 85 | 84 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑆 ∈
ℂ) |
| 86 | 81, 85 | subcld 10392 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆) ∈ ℂ) |
| 87 | 86 | abscld 14175 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ∈ ℝ) |
| 88 | 63, 78 | ffvelrnd 6360 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (seq1( + , 𝐹)‘(⌊‘𝑥)) ∈ ℂ) |
| 89 | 85, 88 | subcld 10392 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑆 − (seq1( +
, 𝐹)‘(⌊‘𝑥))) ∈ ℂ) |
| 90 | 89 | abscld 14175 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑆
− (seq1( + , 𝐹)‘(⌊‘𝑥)))) ∈ ℝ) |
| 91 | 87, 90 | readdcld 10069 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ∈ ℝ) |
| 92 | | 2re 11090 |
. . . . . 6
⊢ 2 ∈
ℝ |
| 93 | | dchrisum0.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| 94 | | elrege0 12278 |
. . . . . . . 8
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
| 95 | 93, 94 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 96 | 95 | simpld 475 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 97 | | remulcl 10021 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ 𝐶
∈ ℝ) → (2 · 𝐶) ∈ ℝ) |
| 98 | 92, 96, 97 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (2 · 𝐶) ∈
ℝ) |
| 99 | 98 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝐶) ∈
ℝ) |
| 100 | 3 | rpsqrtcld 14150 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ+) |
| 101 | 99, 100 | rerpdivcld 11903 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) ∈
ℝ) |
| 102 | 101 | adantr 481 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) ∈
ℝ) |
| 103 | | ssun1 3776 |
. . . . . . . . . . 11
⊢
(1...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) |
| 104 | 103, 15 | syl5sseqr 3654 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘𝑥)) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 105 | 104 | sselda 3603 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 106 | | ovex 6678 |
. . . . . . . . . . 11
⊢ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)) ∈ V |
| 107 | 57, 53, 106 | fvmpt3i 6287 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 108 | 33, 107 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 109 | 105, 108 | syldan 487 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 110 | 78, 10 | syl6eleq 2711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘𝑥)
∈ (ℤ≥‘1)) |
| 111 | 105, 38 | syldan 487 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 112 | 109, 110,
111 | fsumser 14461 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥))) |
| 113 | 112, 88 | eqeltrd 2701 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 114 | 113, 40 | pncan2d 10394 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) |
| 115 | | reflcl 12597 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
| 116 | 66, 115 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘𝑥)
∈ ℝ) |
| 117 | 116 | ltp1d 10954 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘𝑥)
< ((⌊‘𝑥) +
1)) |
| 118 | | fzdisj 12368 |
. . . . . . . . 9
⊢
((⌊‘𝑥)
< ((⌊‘𝑥) +
1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅) |
| 119 | 117, 118 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅) |
| 120 | | fzfid 12772 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin) |
| 121 | 119, 15, 120, 38 | fsumsplit 14471 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)))) |
| 122 | 80, 10 | syl6eleq 2711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘1)) |
| 123 | 108, 122,
38 | fsumser 14461 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑)))) |
| 124 | 121, 123 | eqtr3d 2658 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑)))) |
| 125 | 124, 112 | oveq12d 6668 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) |
| 126 | 114, 125 | eqtr3d 2658 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) |
| 127 | 126 | fveq2d 6195 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))) |
| 128 | 81, 88, 85 | abs3difd 14199 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))))) |
| 129 | 127, 128 | eqbrtrd 4675 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))))) |
| 130 | 96 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℝ) |
| 131 | | simplr 792 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
| 132 | 131 | rpsqrtcld 14150 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑥)
∈ ℝ+) |
| 133 | 130, 132 | rerpdivcld 11903 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 /
(√‘𝑥)) ∈
ℝ) |
| 134 | | 2z 11409 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 135 | | rpexpcl 12879 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
| 136 | 3, 134, 135 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
| 137 | 136 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥↑2) ∈
ℝ+) |
| 138 | 69 | nnrpd 11870 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
| 139 | 137, 138 | rpdivcld 11889 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝑥↑2) / 𝑑) ∈
ℝ+) |
| 140 | 139 | rpsqrtcld 14150 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘((𝑥↑2) / 𝑑)) ∈
ℝ+) |
| 141 | 130, 140 | rerpdivcld 11903 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 /
(√‘((𝑥↑2)
/ 𝑑))) ∈
ℝ) |
| 142 | 136 | rpred 11872 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ) |
| 143 | | nndivre 11056 |
. . . . . . . 8
⊢ (((𝑥↑2) ∈ ℝ ∧
𝑑 ∈ ℕ) →
((𝑥↑2) / 𝑑) ∈
ℝ) |
| 144 | 142, 68, 143 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝑥↑2) / 𝑑) ∈
ℝ) |
| 145 | 12 | simpld 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ≤ ((𝑥↑2) / 𝑑)) |
| 146 | 67, 66, 144, 76, 145 | letrd 10194 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ ((𝑥↑2) /
𝑑)) |
| 147 | | 1re 10039 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 148 | | elicopnf 12269 |
. . . . . . . 8
⊢ (1 ∈
ℝ → (((𝑥↑2)
/ 𝑑) ∈ (1[,)+∞)
↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤
((𝑥↑2) / 𝑑)))) |
| 149 | 147, 148 | ax-mp 5 |
. . . . . . 7
⊢ (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑))) |
| 150 | 144, 146,
149 | sylanbrc 698 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝑥↑2) / 𝑑) ∈
(1[,)+∞)) |
| 151 | | dchrisum0.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
| 152 | 151 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
| 153 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑑))) |
| 154 | 153 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑)))) |
| 155 | 154 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) |
| 156 | 155 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆))) |
| 157 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑑))) |
| 158 | 157 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘((𝑥↑2) / 𝑑)))) |
| 159 | 156, 158 | breq12d 4666 |
. . . . . . 7
⊢ (𝑦 = ((𝑥↑2) / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))) |
| 160 | 159 | rspcv 3305 |
. . . . . 6
⊢ (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) → (∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))) |
| 161 | 150, 152,
160 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑)))) |
| 162 | 132 | rpregt0d 11878 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑥)
∈ ℝ ∧ 0 < (√‘𝑥))) |
| 163 | 140 | rpregt0d 11878 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 <
(√‘((𝑥↑2)
/ 𝑑)))) |
| 164 | 95 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ∈ ℝ
∧ 0 ≤ 𝐶)) |
| 165 | 131 | rprege0d 11879 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
| 166 | 139 | rprege0d 11879 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤
((𝑥↑2) / 𝑑))) |
| 167 | | sqrtle 14001 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) ∧ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))) |
| 168 | 165, 166,
167 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))) |
| 169 | 145, 168 | mpbid 222 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑥)
≤ (√‘((𝑥↑2) / 𝑑))) |
| 170 | | lediv2a 10917 |
. . . . . 6
⊢
(((((√‘𝑥) ∈ ℝ ∧ 0 <
(√‘𝑥)) ∧
((√‘((𝑥↑2)
/ 𝑑)) ∈ ℝ ∧
0 < (√‘((𝑥↑2) / 𝑑))) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥))) |
| 171 | 162, 163,
164, 169, 170 | syl31anc 1329 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 /
(√‘((𝑥↑2)
/ 𝑑))) ≤ (𝐶 / (√‘𝑥))) |
| 172 | 87, 141, 133, 161, 171 | letrd 10194 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘𝑥))) |
| 173 | 85, 88 | abssubd 14192 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑆
− (seq1( + , 𝐹)‘(⌊‘𝑥)))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆))) |
| 174 | | elicopnf 12269 |
. . . . . . . 8
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
| 175 | 147, 174 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ (1[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 1
≤ 𝑥)) |
| 176 | 66, 76, 175 | sylanbrc 698 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
(1[,)+∞)) |
| 177 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (⌊‘𝑦) = (⌊‘𝑥)) |
| 178 | 177 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥))) |
| 179 | 178 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆) = ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) |
| 180 | 179 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆))) |
| 181 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥)) |
| 182 | 181 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘𝑥))) |
| 183 | 180, 182 | breq12d 4666 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))) |
| 184 | 183 | rspcv 3305 |
. . . . . 6
⊢ (𝑥 ∈ (1[,)+∞) →
(∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))) |
| 185 | 176, 152,
184 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥))) |
| 186 | 173, 185 | eqbrtrd 4675 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑆
− (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ (𝐶 / (√‘𝑥))) |
| 187 | 87, 90, 133, 133, 172, 186 | le2addd 10646 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥)))) |
| 188 | | 2cnd 11093 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℂ) |
| 189 | 96 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℝ) |
| 190 | 189 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℂ) |
| 191 | 190 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℂ) |
| 192 | 100 | rpcnne0d 11881 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((√‘𝑥) ∈
ℂ ∧ (√‘𝑥) ≠ 0)) |
| 193 | 192 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑥)
∈ ℂ ∧ (√‘𝑥) ≠ 0)) |
| 194 | | divass 10703 |
. . . . 5
⊢ ((2
∈ ℂ ∧ 𝐶
∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → ((2 ·
𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥)))) |
| 195 | 188, 191,
193, 194 | syl3anc 1326 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) = (2
· (𝐶 /
(√‘𝑥)))) |
| 196 | 133 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 /
(√‘𝑥)) ∈
ℂ) |
| 197 | 196 | 2timesd 11275 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (2 · (𝐶 /
(√‘𝑥))) =
((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥)))) |
| 198 | 195, 197 | eqtrd 2656 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) =
((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥)))) |
| 199 | 187, 198 | breqtrrd 4681 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((2 · 𝐶) / (√‘𝑥))) |
| 200 | 41, 91, 102, 129, 199 | letrd 10194 |
1
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥))) |