MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Structured version   Visualization version   GIF version

Theorem fsumdvdscom 24911
Description: A double commutation of divisor sums based on fsumdvdsdiag 24910. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1 (𝜑𝑁 ∈ ℕ)
fsumdvdscom.2 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
fsumdvdscom.3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumdvdscom (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑗   𝑗,𝑘,𝑚,𝑥,𝑁   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑘,𝑚)

Proof of Theorem fsumdvdscom
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3 𝑢Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴
2 nfcv 2764 . . . 4 𝑗{𝑥 ∈ ℕ ∣ 𝑥𝑢}
3 nfcsb1v 3549 . . . 4 𝑗𝑢 / 𝑗𝐴
42, 3nfsum 14421 . . 3 𝑗Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
5 breq2 4657 . . . . 5 (𝑗 = 𝑢 → (𝑥𝑗𝑥𝑢))
65rabbidv 3189 . . . 4 (𝑗 = 𝑢 → {𝑥 ∈ ℕ ∣ 𝑥𝑗} = {𝑥 ∈ ℕ ∣ 𝑥𝑢})
7 csbeq1a 3542 . . . . 5 (𝑗 = 𝑢𝐴 = 𝑢 / 𝑗𝐴)
87adantr 481 . . . 4 ((𝑗 = 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}) → 𝐴 = 𝑢 / 𝑗𝐴)
96, 8sumeq12dv 14437 . . 3 (𝑗 = 𝑢 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴)
101, 4, 9cbvsumi 14427 . 2 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
11 breq2 4657 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → (𝑥𝑢𝑥 ∥ (𝑁 / 𝑣)))
1211rabbidv 3189 . . . . 5 (𝑢 = (𝑁 / 𝑣) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})
13 csbeq1 3536 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1413adantr 481 . . . . 5 ((𝑢 = (𝑁 / 𝑣) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1512, 14sumeq12dv 14437 . . . 4 (𝑢 = (𝑁 / 𝑣) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
16 fzfid 12772 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
17 fsumdvdscom.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
18 dvdsssfz1 15040 . . . . . 6 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1917, 18syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
20 ssfi 8180 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2116, 19, 20syl2anc 693 . . . 4 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
22 eqid 2622 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
23 eqid 2622 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
2422, 23dvdsflip 15039 . . . . 5 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
2517, 24syl 17 . . . 4 (𝜑 → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
26 oveq2 6658 . . . . . 6 (𝑧 = 𝑣 → (𝑁 / 𝑧) = (𝑁 / 𝑣))
27 ovex 6678 . . . . . 6 (𝑁 / 𝑧) ∈ V
2826, 23, 27fvmpt3i 6287 . . . . 5 (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
2928adantl 482 . . . 4 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
30 fzfid 12772 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑢) ∈ Fin)
31 ssrab2 3687 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
32 simpr 477 . . . . . . . 8 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
3331, 32sseldi 3601 . . . . . . 7 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
34 dvdsssfz1 15040 . . . . . . 7 (𝑢 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
3533, 34syl 17 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
36 ssfi 8180 . . . . . 6 (((1...𝑢) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢)) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
3730, 35, 36syl2anc 693 . . . . 5 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
38 fsumdvdscom.3 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
3938ralrimivva 2971 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ)
40 nfv 1843 . . . . . . . . 9 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ
413nfel1 2779 . . . . . . . . . 10 𝑗𝑢 / 𝑗𝐴 ∈ ℂ
422, 41nfral 2945 . . . . . . . . 9 𝑗𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ
437eleq1d 2686 . . . . . . . . . 10 (𝑗 = 𝑢 → (𝐴 ∈ ℂ ↔ 𝑢 / 𝑗𝐴 ∈ ℂ))
446, 43raleqbidv 3152 . . . . . . . . 9 (𝑗 = 𝑢 → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ))
4540, 42, 44cbvral 3167 . . . . . . . 8 (∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4639, 45sylib 208 . . . . . . 7 (𝜑 → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4746r19.21bi 2932 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4847r19.21bi 2932 . . . . 5 (((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 ∈ ℂ)
4937, 48fsumcl 14464 . . . 4 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5015, 21, 25, 29, 49fsumf1o 14454 . . 3 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
51 dvdsdivcl 15038 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5217, 51sylan 488 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5346adantr 481 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5413eleq1d 2686 . . . . . . . . 9 (𝑢 = (𝑁 / 𝑣) → (𝑢 / 𝑗𝐴 ∈ ℂ ↔ (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5512, 54raleqbidv 3152 . . . . . . . 8 (𝑢 = (𝑁 / 𝑣) → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5655rspcv 3305 . . . . . . 7 ((𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5752, 53, 56sylc 65 . . . . . 6 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5857r19.21bi 2932 . . . . 5 (((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5958anasss 679 . . . 4 ((𝜑 ∧ (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
6017, 59fsumdvdsdiag 24910 . . 3 (𝜑 → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴)
61 oveq2 6658 . . . . . . 7 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) = (𝑁 / ((𝑁 / 𝑘) / 𝑚)))
6261csbeq1d 3540 . . . . . 6 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) / 𝑗𝐴 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
63 fzfid 12772 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑘)) ∈ Fin)
64 dvdsdivcl 15038 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
6531, 64sseldi 3601 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
6617, 65sylan 488 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
67 dvdsssfz1 15040 . . . . . . . 8 ((𝑁 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
6866, 67syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
69 ssfi 8180 . . . . . . 7 (((1...(𝑁 / 𝑘)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
7063, 68, 69syl2anc 693 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
71 eqid 2622 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}
72 eqid 2622 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))
7371, 72dvdsflip 15039 . . . . . . 7 ((𝑁 / 𝑘) ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
7466, 73syl 17 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
75 oveq2 6658 . . . . . . . 8 (𝑧 = 𝑚 → ((𝑁 / 𝑘) / 𝑧) = ((𝑁 / 𝑘) / 𝑚))
76 ovex 6678 . . . . . . . 8 ((𝑁 / 𝑘) / 𝑧) ∈ V
7775, 72, 76fvmpt3i 6287 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7877adantl 482 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7917fsumdvdsdiaglem 24909 . . . . . . . 8 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})))
8059ex 450 . . . . . . . 8 (𝜑 → ((𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8179, 80syld 47 . . . . . . 7 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8281impl 650 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
8362, 70, 74, 78, 82fsumf1o 14454 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
84 ovexd 6680 . . . . . . 7 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V)
85 nncn 11028 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
86 nnne0 11053 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8785, 86jca 554 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8817, 87syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8988ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
9089simpld 475 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑁 ∈ ℂ)
91 elrabi 3359 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑘 ∈ ℕ)
9291adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℕ)
9392adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑘 ∈ ℕ)
94 nncn 11028 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
95 nnne0 11053 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
9694, 95jca 554 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
9793, 96syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
98 elrabi 3359 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → 𝑚 ∈ ℕ)
9998adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑚 ∈ ℕ)
100 nncn 11028 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
101 nnne0 11053 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
102100, 101jca 554 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
10399, 102syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
104 divdiv1 10736 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
10590, 97, 103, 104syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
106105oveq2d 6666 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑁 / (𝑁 / (𝑘 · 𝑚))))
107 nnmulcl 11043 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑘 · 𝑚) ∈ ℕ)
10892, 98, 107syl2an 494 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 · 𝑚) ∈ ℕ)
109 nncn 11028 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ∈ ℂ)
110 nnne0 11053 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ≠ 0)
111109, 110jca 554 . . . . . . . . . . . . 13 ((𝑘 · 𝑚) ∈ ℕ → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
112108, 111syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
113 ddcan 10739 . . . . . . . . . . . 12 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0)) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
11489, 112, 113syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
115106, 114eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑘 · 𝑚))
116115eqeq2d 2632 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ↔ 𝑗 = (𝑘 · 𝑚)))
117116biimpa 501 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝑗 = (𝑘 · 𝑚))
118 fsumdvdscom.2 . . . . . . . 8 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
119117, 118syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝐴 = 𝐵)
12084, 119csbied 3560 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = 𝐵)
121120sumeq2dv 14433 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12283, 121eqtrd 2656 . . . 4 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
123122sumeq2dv 14433 . . 3 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12450, 60, 1233eqtrd 2660 . 2 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12510, 124syl5eq 2668 1 (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  csb 3533  wss 3574   class class class wbr 4653  cmpt 4729  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  cn 11020  ...cfz 12326  Σcsu 14416  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984
This theorem is referenced by:  logsqvma  25231
  Copyright terms: Public domain W3C validator