MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnpi Structured version   Visualization version   GIF version

Theorem cncnpi 21082
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cncnpi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))

Proof of Theorem cncnpi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
2 eqid 2622 . . . 4 𝐾 = 𝐾
31, 2cnf 21050 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 481 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 cnima 21069 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
65ad2ant2r 783 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝑦) ∈ 𝐽)
7 simpr 477 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
87adantr 481 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴𝑋)
9 simprr 796 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝐴) ∈ 𝑦)
103ad2antrr 762 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐹:𝑋 𝐾)
11 ffn 6045 . . . . . . 7 (𝐹:𝑋 𝐾𝐹 Fn 𝑋)
12 elpreima 6337 . . . . . . 7 (𝐹 Fn 𝑋 → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
1310, 11, 123syl 18 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
148, 9, 13mpbir2and 957 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴 ∈ (𝐹𝑦))
15 eqimss 3657 . . . . . . . 8 (𝑥 = (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑦))
1615biantrud 528 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥 ↔ (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
17 eleq2 2690 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥𝐴 ∈ (𝐹𝑦)))
1816, 17bitr3d 270 . . . . . 6 (𝑥 = (𝐹𝑦) → ((𝐴𝑥𝑥 ⊆ (𝐹𝑦)) ↔ 𝐴 ∈ (𝐹𝑦)))
1918rspcev 3309 . . . . 5 (((𝐹𝑦) ∈ 𝐽𝐴 ∈ (𝐹𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
206, 14, 19syl2anc 693 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
2120expr 643 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑦𝐾) → ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
2221ralrimiva 2966 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
23 cntop1 21044 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2423adantr 481 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
251toptopon 20722 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2624, 25sylib 208 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 cntop2 21045 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 481 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 20722 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 208 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscnp3 21048 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
3226, 30, 7, 31syl3anc 1326 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
334, 22, 32mpbir2and 957 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   cuni 4436  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-cnp 21032
This theorem is referenced by:  cnsscnp  21083  cncnp  21084  lmcn  21109  ptcn  21430  tmdcn2  21893  ghmcnp  21918  tsmsmhm  21949  tsmsadd  21950  dvcnp2  23683  dvaddbr  23701  dvmulbr  23702  dvcobr  23709  dvcjbr  23712  dvcnvlem  23739  lhop1lem  23776  dvcnvrelem2  23781  ftc1cn  23806  taylthlem2  24128  psercn  24180  abelth  24195  cxpcn3  24489  efrlim  24696  blocni  27660  cvmlift2lem11  31295  cvmlift2lem12  31296  cvmlift3lem7  31307  poimir  33442  ftc1cnnc  33484  cncfiooicclem1  40106  fouriercn  40449
  Copyright terms: Public domain W3C validator