MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdirlem Structured version   Visualization version   GIF version

Theorem mulgdirlem 17572
Description: Lemma for mulgdir 17573. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdirlem ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1064 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
2 grpmnd 17429 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
31, 2syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
4 simprl 794 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
5 simprr 796 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
6 simpl23 1141 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
7 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
8 mulgnndir.t . . . . . 6 · = (.g𝐺)
9 mulgnndir.p . . . . . 6 + = (+g𝐺)
107, 8, 9mulgnn0dir 17571 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
113, 4, 5, 6, 10syl13anc 1328 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
1211anassrs 680 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpl1 1064 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
14 simp22 1095 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
1514adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℤ)
16 simpl23 1141 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
17 eqid 2622 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
187, 8, 17mulgneg 17560 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1913, 15, 16, 18syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
2019oveq1d 6665 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)))
217, 8mulgcl 17559 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2213, 15, 16, 21syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑁 · 𝑋) ∈ 𝐵)
23 eqid 2622 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
247, 9, 23, 17grplinv 17468 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2513, 22, 24syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2620, 25eqtrd 2656 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (0g𝐺))
2726oveq2d 6666 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)))
28 simpl3 1066 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
29 nn0z 11400 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℕ0 → (𝑀 + 𝑁) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℤ)
317, 8mulgcl 17559 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
3213, 30, 16, 31syl3anc 1326 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
337, 9, 23grprid 17453 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3413, 32, 33syl2anc 693 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3527, 34eqtrd 2656 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
36 nn0z 11400 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
3736ad2antll 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
387, 8mulgcl 17559 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3913, 37, 16, 38syl3anc 1326 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
407, 9grpass 17431 . . . . . . 7 ((𝐺 ∈ Grp ∧ (((𝑀 + 𝑁) · 𝑋) ∈ 𝐵 ∧ (-𝑁 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4113, 32, 39, 22, 40syl13anc 1328 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4213, 2syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
43 simprr 796 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
447, 8, 9mulgnn0dir 17571 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
4542, 28, 43, 16, 44syl13anc 1328 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
46 simp21 1094 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
4746zcnd 11483 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
4814zcnd 11483 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
4947, 48addcld 10059 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
5049adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℂ)
5148adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5250, 51negsubd 10398 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = ((𝑀 + 𝑁) − 𝑁))
5347adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℂ)
5453, 51pncand 10393 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
5552, 54eqtrd 2656 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = 𝑀)
5655oveq1d 6665 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (𝑀 · 𝑋))
5745, 56eqtr3d 2658 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) = (𝑀 · 𝑋))
5857oveq1d 6665 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5941, 58eqtr3d 2658 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6035, 59eqtr3d 2658 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6160anassrs 680 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ -𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
62 elznn0 11392 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6362simprbi 480 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6414, 63syl 17 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6564adantr 481 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6612, 61, 65mpjaodan 827 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
67 simpl1 1064 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Grp)
6846adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
69 simpl23 1141 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
707, 8mulgcl 17559 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
7167, 68, 69, 70syl3anc 1326 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
7268znegcld 11484 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℤ)
737, 8mulgcl 17559 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) ∈ 𝐵)
7467, 72, 69, 73syl3anc 1326 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) ∈ 𝐵)
75293ad2ant3 1084 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7675adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7767, 76, 69, 31syl3anc 1326 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
787, 9grpass 17431 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (-𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
7967, 71, 74, 77, 78syl13anc 1328 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
807, 8, 17mulgneg 17560 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8167, 68, 69, 80syl3anc 1326 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8281oveq2d 6666 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))))
837, 9, 23, 17grprinv 17469 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8467, 71, 83syl2anc 693 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8582, 84eqtrd 2656 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = (0g𝐺))
8685oveq1d 6665 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)))
877, 9, 23grplid 17452 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8867, 77, 87syl2anc 693 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8986, 88eqtrd 2656 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
9067, 2syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
91 simpr 477 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
92 simpl3 1066 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
937, 8, 9mulgnn0dir 17571 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑋𝐵)) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9490, 91, 92, 69, 93syl13anc 1328 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9547adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
9695negcld 10379 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℂ)
9749adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
9896, 97addcomd 10238 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = ((𝑀 + 𝑁) + -𝑀))
9997, 95negsubd 10398 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
10048adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
10195, 100pncan2d 10394 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
10298, 99, 1013eqtrd 2660 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = 𝑁)
103102oveq1d 6665 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = (𝑁 · 𝑋))
10494, 103eqtr3d 2658 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)) = (𝑁 · 𝑋))
105104oveq2d 6666 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
10679, 89, 1053eqtr3d 2664 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
107 elznn0 11392 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
108107simprbi 480 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10946, 108syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
11066, 106, 109mpjaodan 827 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939  cmin 10266  -cneg 10267  0cn0 11292  cz 11377  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  Grpcgrp 17422  invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541
This theorem is referenced by:  mulgdir  17573
  Copyright terms: Public domain W3C validator