MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Visualization version   GIF version

Theorem nmzsubg 17635
Description: The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
nmzsubg (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem nmzsubg
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
2 ssrab2 3687 . . . 4 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⊆ 𝑋
31, 2eqsstri 3635 . . 3 𝑁𝑋
43a1i 11 . 2 (𝐺 ∈ Grp → 𝑁𝑋)
5 nmzsubg.2 . . . . 5 𝑋 = (Base‘𝐺)
6 eqid 2622 . . . . 5 (0g𝐺) = (0g𝐺)
75, 6grpidcl 17450 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
8 nmzsubg.3 . . . . . . . 8 + = (+g𝐺)
95, 8, 6grplid 17452 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
105, 8, 6grprid 17453 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + (0g𝐺)) = 𝑧)
119, 10eqtr4d 2659 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = (𝑧 + (0g𝐺)))
1211eleq1d 2686 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
1312ralrimiva 2966 . . . 4 (𝐺 ∈ Grp → ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
141elnmz 17633 . . . 4 ((0g𝐺) ∈ 𝑁 ↔ ((0g𝐺) ∈ 𝑋 ∧ ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆)))
157, 13, 14sylanbrc 698 . . 3 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑁)
16 ne0i 3921 . . 3 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
1715, 16syl 17 . 2 (𝐺 ∈ Grp → 𝑁 ≠ ∅)
18 id 22 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
193sseli 3599 . . . . . . . 8 (𝑧𝑁𝑧𝑋)
203sseli 3599 . . . . . . . 8 (𝑤𝑁𝑤𝑋)
215, 8grpcl 17430 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧 + 𝑤) ∈ 𝑋)
2218, 19, 20, 21syl3an 1368 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑋)
23 simpl1 1064 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
24 simpl2 1065 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
253, 24sseldi 3601 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
26 simpl3 1066 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑁)
273, 26sseldi 3601 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑋)
28 simpr 477 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
295, 8grpass 17431 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑤𝑋𝑢𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
3023, 25, 27, 28, 29syl13anc 1328 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
3130eleq1d 2686 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆))
325, 8grpcl 17430 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
3323, 27, 28, 32syl3anc 1326 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
341nmzbi 17634 . . . . . . . . . . 11 ((𝑧𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
3524, 33, 34syl2anc 693 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
365, 8grpass 17431 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑤𝑋𝑢𝑋𝑧𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3723, 27, 28, 25, 36syl13anc 1328 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3837eleq1d 2686 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆))
395, 8grpcl 17430 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑧𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
4023, 28, 25, 39syl3anc 1326 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
411nmzbi 17634 . . . . . . . . . . 11 ((𝑤𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4226, 40, 41syl2anc 693 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4335, 38, 423bitrd 294 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
445, 8grpass 17431 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑤𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4523, 28, 25, 27, 44syl13anc 1328 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4645eleq1d 2686 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4731, 43, 463bitrd 294 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4847ralrimiva 2966 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
491elnmz 17633 . . . . . . 7 ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)))
5022, 48, 49sylanbrc 698 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
51503expa 1265 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
5251ralrimiva 2966 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁)
53 eqid 2622 . . . . . . 7 (invg𝐺) = (invg𝐺)
545, 53grpinvcl 17467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5519, 54sylan2 491 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑋)
56 simplr 792 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
57 simpll 790 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
5855adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
59 simpr 477 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
605, 8grpcl 17430 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
6157, 59, 58, 60syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
625, 8grpcl 17430 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
6357, 58, 61, 62syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
641nmzbi 17634 . . . . . . . 8 ((𝑧𝑁 ∧ (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
6556, 63, 64syl2anc 693 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
663, 56sseldi 3601 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
675, 8, 6, 53grprinv 17469 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6857, 66, 67syl2anc 693 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6968oveq1d 6665 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))))
705, 8grpass 17431 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑧𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
7157, 66, 58, 61, 70syl13anc 1328 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
725, 8, 6grplid 17452 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7357, 61, 72syl2anc 693 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7469, 71, 733eqtr3d 2664 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) = (𝑢 + ((invg𝐺)‘𝑧)))
7574eleq1d 2686 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
765, 8grpass 17431 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋𝑧𝑋)) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
7757, 58, 61, 66, 76syl13anc 1328 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
785, 8grpass 17431 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
7957, 59, 58, 66, 78syl13anc 1328 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
805, 8, 6, 53grplinv 17468 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
8157, 66, 80syl2anc 693 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
8281oveq2d 6666 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g𝐺)))
835, 8, 6grprid 17453 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8457, 59, 83syl2anc 693 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8579, 82, 843eqtrd 2660 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = 𝑢)
8685oveq2d 6666 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)) = (((invg𝐺)‘𝑧) + 𝑢))
8777, 86eqtrd 2656 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + 𝑢))
8887eleq1d 2686 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆))
8965, 75, 883bitr3rd 299 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
9089ralrimiva 2966 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
911elnmz 17633 . . . . 5 (((invg𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆)))
9255, 90, 91sylanbrc 698 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑁)
9352, 92jca 554 . . 3 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
9493ralrimiva 2966 . 2 (𝐺 ∈ Grp → ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
955, 8, 53issubg2 17609 . 2 (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁𝑋𝑁 ≠ ∅ ∧ ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))))
964, 17, 94, 95mpbir3and 1245 1 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591
This theorem is referenced by:  nmznsg  17638  sylow3lem3  18044  sylow3lem4  18045  sylow3lem6  18047
  Copyright terms: Public domain W3C validator