| Step | Hyp | Ref
| Expression |
| 1 | | elnmz.1 |
. . . 4
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| 2 | | ssrab2 3687 |
. . . 4
⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⊆ 𝑋 |
| 3 | 1, 2 | eqsstri 3635 |
. . 3
⊢ 𝑁 ⊆ 𝑋 |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝐺 ∈ Grp → 𝑁 ⊆ 𝑋) |
| 5 | | nmzsubg.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
| 6 | | eqid 2622 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 7 | 5, 6 | grpidcl 17450 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
| 8 | | nmzsubg.3 |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
| 9 | 5, 8, 6 | grplid 17452 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = 𝑧) |
| 10 | 5, 8, 6 | grprid 17453 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 + (0g‘𝐺)) = 𝑧) |
| 11 | 9, 10 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = (𝑧 + (0g‘𝐺))) |
| 12 | 11 | eleq1d 2686 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
| 13 | 12 | ralrimiva 2966 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
| 14 | 1 | elnmz 17633 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝑁 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆))) |
| 15 | 7, 13, 14 | sylanbrc 698 |
. . 3
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑁) |
| 16 | | ne0i 3921 |
. . 3
⊢
((0g‘𝐺) ∈ 𝑁 → 𝑁 ≠ ∅) |
| 17 | 15, 16 | syl 17 |
. 2
⊢ (𝐺 ∈ Grp → 𝑁 ≠ ∅) |
| 18 | | id 22 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
| 19 | 3 | sseli 3599 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋) |
| 20 | 3 | sseli 3599 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
| 21 | 5, 8 | grpcl 17430 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧 + 𝑤) ∈ 𝑋) |
| 22 | 18, 19, 20, 21 | syl3an 1368 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑋) |
| 23 | | simpl1 1064 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 24 | | simpl2 1065 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
| 25 | 3, 24 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 26 | | simpl3 1066 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑁) |
| 27 | 3, 26 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
| 28 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
| 29 | 5, 8 | grpass 17431 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
| 30 | 23, 25, 27, 28, 29 | syl13anc 1328 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
| 31 | 30 | eleq1d 2686 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆)) |
| 32 | 5, 8 | grpcl 17430 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
| 33 | 23, 27, 28, 32 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
| 34 | 1 | nmzbi 17634 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
| 35 | 24, 33, 34 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
| 36 | 5, 8 | grpass 17431 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
| 37 | 23, 27, 28, 25, 36 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
| 38 | 37 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆)) |
| 39 | 5, 8 | grpcl 17430 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑢 + 𝑧) ∈ 𝑋) |
| 40 | 23, 28, 25, 39 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + 𝑧) ∈ 𝑋) |
| 41 | 1 | nmzbi 17634 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
| 42 | 26, 40, 41 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
| 43 | 35, 38, 42 | 3bitrd 294 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
| 44 | 5, 8 | grpass 17431 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
| 45 | 23, 28, 25, 27, 44 | syl13anc 1328 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
| 46 | 45 | eleq1d 2686 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
| 47 | 31, 43, 46 | 3bitrd 294 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
| 48 | 47 | ralrimiva 2966 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
| 49 | 1 | elnmz 17633 |
. . . . . . 7
⊢ ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))) |
| 50 | 22, 48, 49 | sylanbrc 698 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
| 51 | 50 | 3expa 1265 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
| 52 | 51 | ralrimiva 2966 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁) |
| 53 | | eqid 2622 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 54 | 5, 53 | grpinvcl 17467 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
| 55 | 19, 54 | sylan2 491 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
| 56 | | simplr 792 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
| 57 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 58 | 55 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
| 59 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
| 60 | 5, 8 | grpcl 17430 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋) → (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) |
| 61 | 57, 59, 58, 60 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) |
| 62 | 5, 8 | grpcl 17430 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) |
| 63 | 57, 58, 61, 62 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) |
| 64 | 1 | nmzbi 17634 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
| 65 | 56, 63, 64 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
| 66 | 3, 56 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 67 | 5, 8, 6, 53 | grprinv 17469 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
| 68 | 57, 66, 67 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
| 69 | 68 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧)))) |
| 70 | 5, 8 | grpass 17431 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
| 71 | 57, 66, 58, 61, 70 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
| 72 | 5, 8, 6 | grplid 17452 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
| 73 | 57, 61, 72 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
| 74 | 69, 71, 73 | 3eqtr3d 2664 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
| 75 | 74 | eleq1d 2686 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 76 | 5, 8 | grpass 17431 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
| 77 | 57, 58, 61, 66, 76 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
| 78 | 5, 8 | grpass 17431 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
| 79 | 57, 59, 58, 66, 78 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
| 80 | 5, 8, 6, 53 | grplinv 17468 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
| 81 | 57, 66, 80 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
| 82 | 81 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g‘𝐺))) |
| 83 | 5, 8, 6 | grprid 17453 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
| 84 | 57, 59, 83 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
| 85 | 79, 82, 84 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = 𝑢) |
| 86 | 85 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧)) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
| 87 | 77, 86 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
| 88 | 87 | eleq1d 2686 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆)) |
| 89 | 65, 75, 88 | 3bitr3rd 299 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 90 | 89 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 91 | 1 | elnmz 17633 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆))) |
| 92 | 55, 90, 91 | sylanbrc 698 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑁) |
| 93 | 52, 92 | jca 554 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
| 94 | 93 | ralrimiva 2966 |
. 2
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
| 95 | 5, 8, 53 | issubg2 17609 |
. 2
⊢ (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁 ⊆ 𝑋 ∧ 𝑁 ≠ ∅ ∧ ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)))) |
| 96 | 4, 17, 94, 95 | mpbir3and 1245 |
1
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |