MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1faddlem Structured version   Visualization version   GIF version

Theorem i1faddlem 23460
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1faddlem ((𝜑𝐴 ∈ ℂ) → ((𝐹𝑓 + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1faddlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 23443 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
4 ffn 6045 . . . . . . . 8 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
53, 4syl 17 . . . . . . 7 (𝜑𝐹 Fn ℝ)
6 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 23443 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
9 ffn 6045 . . . . . . . 8 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
108, 9syl 17 . . . . . . 7 (𝜑𝐺 Fn ℝ)
11 reex 10027 . . . . . . . 8 ℝ ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
13 inidm 3822 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
145, 10, 12, 12, 13offn 6908 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺) Fn ℝ)
1514adantr 481 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (𝐹𝑓 + 𝐺) Fn ℝ)
16 fniniseg 6338 . . . . 5 ((𝐹𝑓 + 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹𝑓 + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
1715, 16syl 17 . . . 4 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹𝑓 + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
1810ad2antrr 762 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ)
19 simprl 794 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ)
20 fnfvelrn 6356 . . . . . . . 8 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
2118, 19, 20syl2anc 693 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
22 simprr 796 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)
23 eqidd 2623 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
24 eqidd 2623 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
255, 10, 12, 12, 13, 23, 24ofval 6906 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2625ad2ant2r 783 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2722, 26eqtr3d 2658 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹𝑧) + (𝐺𝑧)))
2827oveq1d 6665 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺𝑧)) = (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)))
29 ax-resscn 9993 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
30 fss 6056 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
313, 29, 30sylancl 694 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℂ)
3231ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ)
3332, 19ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
34 fss 6056 . . . . . . . . . . . . . 14 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
358, 29, 34sylancl 694 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶ℂ)
3635ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ)
3736, 19ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
3833, 37pncand 10393 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)) = (𝐹𝑧))
3928, 38eqtr2d 2657 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) = (𝐴 − (𝐺𝑧)))
405ad2antrr 762 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ)
41 fniniseg 6338 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4319, 39, 42mpbir2and 957 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}))
44 eqidd 2623 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
45 fniniseg 6338 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4618, 45syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4719, 44, 46mpbir2and 957 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
4843, 47elind 3798 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
49 oveq2 6658 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴𝑦) = (𝐴 − (𝐺𝑧)))
5049sneqd 4189 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴𝑦)} = {(𝐴 − (𝐺𝑧))})
5150imaeq2d 5466 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴𝑦)}) = (𝐹 “ {(𝐴 − (𝐺𝑧))}))
52 sneq 4187 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
5352imaeq2d 5466 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
5451, 53ineq12d 3815 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
5554eleq2d 2687 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
5655rspcev 3309 . . . . . . 7 (((𝐺𝑧) ∈ ran 𝐺𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5721, 48, 56syl2anc 693 . . . . . 6 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5857ex 450 . . . . 5 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
59 elin 3796 . . . . . . 7 (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
605adantr 481 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐹 Fn ℝ)
61 fniniseg 6338 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
6260, 61syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
6310adantr 481 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐺 Fn ℝ)
64 fniniseg 6338 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6563, 64syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6662, 65anbi12d 747 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
67 anandi 871 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
68 simprl 794 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑧 ∈ ℝ)
6925ad2ant2r 783 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
70 simprrl 804 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐹𝑧) = (𝐴𝑦))
71 simprrr 805 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) = 𝑦)
7270, 71oveq12d 6668 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑧) + (𝐺𝑧)) = ((𝐴𝑦) + 𝑦))
73 simplr 792 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐴 ∈ ℂ)
7435ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ)
7574, 68ffvelrnd 6360 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) ∈ ℂ)
7671, 75eqeltrrd 2702 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑦 ∈ ℂ)
7773, 76npcand 10396 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐴𝑦) + 𝑦) = 𝐴)
7869, 72, 773eqtrd 2660 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)
7968, 78jca 554 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴))
8079ex 450 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
8167, 80syl5bir 233 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
8266, 81sylbid 230 . . . . . . 7 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
8359, 82syl5bi 232 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
8483rexlimdvw 3034 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴)))
8558, 84impbid 202 . . . 4 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑓 + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8617, 85bitrd 268 . . 3 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹𝑓 + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
87 eliun 4524 . . 3 (𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
8886, 87syl6bbr 278 . 2 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹𝑓 + 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8988eqrdv 2620 1 ((𝜑𝐴 ∈ ℂ) → ((𝐹𝑓 + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cin 3573  wss 3574  {csn 4177   ciun 4520  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935   + caddc 9939  cmin 10266  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-sum 14417  df-itg1 23389
This theorem is referenced by:  i1fadd  23462  itg1addlem4  23466
  Copyright terms: Public domain W3C validator