| Step | Hyp | Ref
| Expression |
| 1 | | i1fadd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | i1ff 23443 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 4 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 6 | | i1fadd.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
| 7 | | i1ff 23443 |
. . . . . . . . 9
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 9 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐺:ℝ⟶ℝ →
𝐺 Fn
ℝ) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
| 11 | | reex 10027 |
. . . . . . . 8
⊢ ℝ
∈ V |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
| 13 | | inidm 3822 |
. . . . . . 7
⊢ (ℝ
∩ ℝ) = ℝ |
| 14 | 5, 10, 12, 12, 13 | offn 6908 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) Fn ℝ) |
| 15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝐹 ∘𝑓 + 𝐺) Fn ℝ) |
| 16 | | fniniseg 6338 |
. . . . 5
⊢ ((𝐹 ∘𝑓 +
𝐺) Fn ℝ → (𝑧 ∈ (◡(𝐹 ∘𝑓 + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘𝑓 + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 18 | 10 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ) |
| 19 | | simprl 794 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ) |
| 20 | | fnfvelrn 6356 |
. . . . . . . 8
⊢ ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ran 𝐺) |
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) ∈ ran 𝐺) |
| 22 | | simprr 796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴) |
| 23 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
| 24 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
| 25 | 5, 10, 12, 12, 13, 23, 24 | ofval 6906 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 26 | 25 | ad2ant2r 783 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 27 | 22, 26 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 28 | 27 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺‘𝑧)) = (((𝐹‘𝑧) + (𝐺‘𝑧)) − (𝐺‘𝑧))) |
| 29 | | ax-resscn 9993 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
| 30 | | fss 6056 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶ℝ ∧
ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) |
| 31 | 3, 29, 30 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 32 | 31 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ) |
| 33 | 32, 19 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐹‘𝑧) ∈ ℂ) |
| 34 | | fss 6056 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ℝ⟶ℝ ∧
ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) |
| 35 | 8, 29, 34 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℝ⟶ℂ) |
| 36 | 35 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ) |
| 37 | 36, 19 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) ∈ ℂ) |
| 38 | 33, 37 | pncand 10393 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (((𝐹‘𝑧) + (𝐺‘𝑧)) − (𝐺‘𝑧)) = (𝐹‘𝑧)) |
| 39 | 28, 38 | eqtr2d 2657 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))) |
| 40 | 5 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ) |
| 41 | | fniniseg 6338 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))))) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))))) |
| 43 | 19, 39, 42 | mpbir2and 957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))})) |
| 44 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
| 45 | | fniniseg 6338 |
. . . . . . . . . 10
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
| 46 | 18, 45 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
| 47 | 19, 44, 46 | mpbir2and 957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)})) |
| 48 | 43, 47 | elind 3798 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
| 49 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘𝑧) → (𝐴 − 𝑦) = (𝐴 − (𝐺‘𝑧))) |
| 50 | 49 | sneqd 4189 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {(𝐴 − 𝑦)} = {(𝐴 − (𝐺‘𝑧))}) |
| 51 | 50 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐹 “ {(𝐴 − 𝑦)}) = (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))})) |
| 52 | | sneq 4187 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {𝑦} = {(𝐺‘𝑧)}) |
| 53 | 52 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(𝐺‘𝑧)})) |
| 54 | 51, 53 | ineq12d 3815 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑧) → ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
| 55 | 54 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑧) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)})))) |
| 56 | 55 | rspcev 3309 |
. . . . . . 7
⊢ (((𝐺‘𝑧) ∈ ran 𝐺 ∧ 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
| 57 | 21, 48, 56 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
| 58 | 57 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
| 59 | | elin 3796 |
. . . . . . 7
⊢ (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦}))) |
| 60 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℝ) |
| 61 | | fniniseg 6338 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)))) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)))) |
| 63 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℝ) |
| 64 | | fniniseg 6338 |
. . . . . . . . . 10
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
| 66 | 62, 65 | anbi12d 747 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦)))) |
| 67 | | anandi 871 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
| 68 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝑧 ∈ ℝ) |
| 69 | 25 | ad2ant2r 783 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 70 | | simprrl 804 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐹‘𝑧) = (𝐴 − 𝑦)) |
| 71 | | simprrr 805 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐺‘𝑧) = 𝑦) |
| 72 | 70, 71 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹‘𝑧) + (𝐺‘𝑧)) = ((𝐴 − 𝑦) + 𝑦)) |
| 73 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝐴 ∈ ℂ) |
| 74 | 35 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ) |
| 75 | 74, 68 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐺‘𝑧) ∈ ℂ) |
| 76 | 71, 75 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝑦 ∈ ℂ) |
| 77 | 73, 76 | npcand 10396 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐴 − 𝑦) + 𝑦) = 𝐴) |
| 78 | 69, 72, 77 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴) |
| 79 | 68, 78 | jca 554 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴)) |
| 80 | 79 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 81 | 67, 80 | syl5bir 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 82 | 66, 81 | sylbid 230 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 83 | 59, 82 | syl5bi 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 84 | 83 | rexlimdvw 3034 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴))) |
| 85 | 58, 84 | impbid 202 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
| 86 | 17, 85 | bitrd 268 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘𝑓 + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
| 87 | | eliun 4524 |
. . 3
⊢ (𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
| 88 | 86, 87 | syl6bbr 278 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘𝑓 + 𝐺) “ {𝐴}) ↔ 𝑧 ∈ ∪
𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
| 89 | 88 | eqrdv 2620 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝐴}) = ∪
𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |