| Step | Hyp | Ref
| Expression |
| 1 | | readdcl 10019 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 2 | 1 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
| 3 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 4 | | i1ff 23443 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 6 | | i1fadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
| 7 | | i1ff 23443 |
. . . 4
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 9 | | reex 10027 |
. . . 4
⊢ ℝ
∈ V |
| 10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈
V) |
| 11 | | inidm 3822 |
. . 3
⊢ (ℝ
∩ ℝ) = ℝ |
| 12 | 2, 5, 8, 10, 10, 11 | off 6912 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):ℝ⟶ℝ) |
| 13 | | i1frn 23444 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 14 | 3, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 15 | | i1frn 23444 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
| 16 | 6, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
| 17 | | xpfi 8231 |
. . . . 5
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
| 18 | 14, 16, 17 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
| 19 | | eqid 2622 |
. . . . . 6
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) |
| 20 | | ovex 6678 |
. . . . . 6
⊢ (𝑢 + 𝑣) ∈ V |
| 21 | 19, 20 | fnmpt2i 7239 |
. . . . 5
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) |
| 22 | | dffn4 6121 |
. . . . 5
⊢ ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) |
| 23 | 21, 22 | mpbi 220 |
. . . 4
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) |
| 24 | | fofi 8252 |
. . . 4
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin) |
| 25 | 18, 23, 24 | sylancl 694 |
. . 3
⊢ (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin) |
| 26 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 + 𝑦) = (𝑥 + 𝑦) |
| 27 | | rspceov 6692 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
| 28 | 26, 27 | mp3an3 1413 |
. . . . . . . 8
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
| 29 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝑥 + 𝑦) ∈ V |
| 30 | | eqeq1 2626 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣))) |
| 31 | 30 | 2rexbidv 3057 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))) |
| 32 | 29, 31 | elab 3350 |
. . . . . . . 8
⊢ ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
| 33 | 28, 32 | sylibr 224 |
. . . . . . 7
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
| 34 | 33 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
| 35 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 36 | 5, 35 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 37 | | dffn3 6054 |
. . . . . . 7
⊢ (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹) |
| 38 | 36, 37 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ran 𝐹) |
| 39 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐺:ℝ⟶ℝ →
𝐺 Fn
ℝ) |
| 40 | 8, 39 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
| 41 | | dffn3 6054 |
. . . . . . 7
⊢ (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺) |
| 42 | 40, 41 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℝ⟶ran 𝐺) |
| 43 | 34, 38, 42, 10, 10, 11 | off 6912 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
| 44 | | frn 6053 |
. . . . 5
⊢ ((𝐹 ∘𝑓 +
𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} → ran (𝐹 ∘𝑓 + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
| 45 | 43, 44 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
| 46 | 19 | rnmpt2 6770 |
. . . 4
⊢ ran
(𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} |
| 47 | 45, 46 | syl6sseqr 3652 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) |
| 48 | | ssfi 8180 |
. . 3
⊢ ((ran
(𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin ∧ ran (𝐹 ∘𝑓 + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝐹 ∘𝑓 + 𝐺) ∈ Fin) |
| 49 | 25, 47, 48 | syl2anc 693 |
. 2
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ∈ Fin) |
| 50 | | frn 6053 |
. . . . . . . 8
⊢ ((𝐹 ∘𝑓 +
𝐺):ℝ⟶ℝ
→ ran (𝐹
∘𝑓 + 𝐺) ⊆ ℝ) |
| 51 | 12, 50 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ⊆
ℝ) |
| 52 | 51 | ssdifssd 3748 |
. . . . . 6
⊢ (𝜑 → (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0}) ⊆
ℝ) |
| 53 | 52 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → 𝑦 ∈
ℝ) |
| 54 | 53 | recnd 10068 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → 𝑦 ∈
ℂ) |
| 55 | 3, 6 | i1faddlem 23460 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
| 56 | 54, 55 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
| 57 | 16 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin) |
| 58 | 3 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom
∫1) |
| 59 | | i1fmbf 23442 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
MblFn) |
| 60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn) |
| 61 | 5 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ) |
| 62 | 12 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 ∘𝑓 + 𝐺):ℝ⟶ℝ) |
| 63 | 62, 50 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹 ∘𝑓 + 𝐺) ⊆
ℝ) |
| 64 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹 ∘𝑓 + 𝐺)) |
| 65 | 64 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹 ∘𝑓 + 𝐺)) |
| 66 | 63, 65 | sseldd 3604 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 67 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ) |
| 68 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
ran 𝐺 ⊆
ℝ) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → ran 𝐺 ⊆
ℝ) |
| 70 | 69 | sselda 3603 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 71 | 66, 70 | resubcld 10458 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 − 𝑧) ∈ ℝ) |
| 72 | | mbfimasn 23401 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧
(𝑦 − 𝑧) ∈ ℝ) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
| 73 | 60, 61, 71, 72 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
| 74 | 6 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom
∫1) |
| 75 | | i1fmbf 23442 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 ∈
MblFn) |
| 76 | 74, 75 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn) |
| 77 | 8 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ) |
| 78 | | mbfimasn 23401 |
. . . . . . 7
⊢ ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(◡𝐺 “ {𝑧}) ∈ dom vol) |
| 79 | 76, 77, 70, 78 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 80 | | inmbl 23310 |
. . . . . 6
⊢ (((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 81 | 73, 79, 80 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 82 | 81 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
∀𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 83 | | finiunmbl 23312 |
. . . 4
⊢ ((ran
𝐺 ∈ Fin ∧
∀𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) → ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 84 | 57, 82, 83 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 85 | 56, 84 | eqeltrd 2701 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ∈ dom vol) |
| 86 | | mblvol 23298 |
. . . 4
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}))) |
| 87 | 85, 86 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}))) |
| 88 | | mblss 23299 |
. . . . 5
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ∈ dom vol → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ) |
| 89 | 85, 88 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ) |
| 90 | | inss1 3833 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {(𝑦 − 𝑧)}) |
| 91 | 90 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {(𝑦 − 𝑧)})) |
| 92 | 73 | adantrr 753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
| 93 | | mblss 23299 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol → (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ) |
| 94 | 92, 93 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ) |
| 95 | | mblvol 23298 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)}))) |
| 96 | 92, 95 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)}))) |
| 97 | | simprr 796 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → 𝑧 = 0) |
| 98 | 97 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 𝑧) = (𝑦 − 0)) |
| 99 | 54 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → 𝑦 ∈ ℂ) |
| 100 | 99 | subid1d 10381 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 0) = 𝑦) |
| 101 | 98, 100 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 𝑧) = 𝑦) |
| 102 | 101 | sneqd 4189 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → {(𝑦 − 𝑧)} = {𝑦}) |
| 103 | 102 | imaeq2d 5466 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) = (◡𝐹 “ {𝑦})) |
| 104 | 103 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol‘(◡𝐹 “ {𝑦}))) |
| 105 | | i1fima2sn 23447 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 +
𝐺) ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 106 | 3, 105 | sylan 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 107 | 106 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 108 | 104, 107 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) |
| 109 | 96, 108 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) |
| 110 | | ovolsscl 23254 |
. . . . . . . 8
⊢ ((((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {(𝑦 − 𝑧)}) ∧ (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 111 | 91, 94, 109, 110 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 112 | 111 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
| 113 | | eldifsn 4317 |
. . . . . . . 8
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0)) |
| 114 | | inss2 3834 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
| 115 | 114 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
| 116 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺) |
| 117 | | mblss 23299 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
| 118 | 79, 117 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
| 119 | 116, 118 | sylan2 491 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
| 120 | | i1fima 23445 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 121 | 6, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 122 | 121 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 123 | | mblvol 23298 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
| 125 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) → 𝐺 ∈ dom
∫1) |
| 126 | | i1fima2sn 23447 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
| 127 | 125, 126 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
| 128 | 124, 127 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
| 129 | | ovolsscl 23254 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) ∧ (◡𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 130 | 115, 119,
128, 129 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 131 | 113, 130 | sylan2br 493 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0)) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 132 | 131 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
| 133 | 112, 132 | pm2.61dne 2880 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 134 | 57, 133 | fsumrecl 14465 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 135 | 56 | fveq2d 6195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) = (vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
| 136 | 114, 118 | syl5ss 3614 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ) |
| 137 | 136, 133 | jca 554 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
| 138 | 137 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
∀𝑧 ∈ ran 𝐺(((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
| 139 | | ovolfiniun 23269 |
. . . . . 6
⊢ ((ran
𝐺 ∈ Fin ∧
∀𝑧 ∈ ran 𝐺(((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) →
(vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
| 140 | 57, 138, 139 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
| 141 | 135, 140 | eqbrtrd 4675 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
| 142 | | ovollecl 23251 |
. . . 4
⊢ (((◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) → (vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) ∈ ℝ) |
| 143 | 89, 134, 141, 142 | syl3anc 1326 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) ∈ ℝ) |
| 144 | 87, 143 | eqeltrd 2701 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖ {0})) →
(vol‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑦})) ∈ ℝ) |
| 145 | 12, 49, 85, 144 | i1fd 23448 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ dom
∫1) |