MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fadd Structured version   Visualization version   GIF version

Theorem i1fadd 23462
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fadd (𝜑 → (𝐹𝑓 + 𝐺) ∈ dom ∫1)

Proof of Theorem i1fadd
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10019 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 23443 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 23443 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 10027 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 3822 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 6912 . 2 (𝜑 → (𝐹𝑓 + 𝐺):ℝ⟶ℝ)
13 i1frn 23444 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 23444 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 8231 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 693 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2622 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
20 ovex 6678 . . . . . 6 (𝑢 + 𝑣) ∈ V
2119, 20fnmpt2i 7239 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6121 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
2321, 22mpbi 220 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
24 fofi 8252 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
2518, 23, 24sylancl 694 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
26 eqid 2622 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥 + 𝑦)
27 rspceov 6692 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
2826, 27mp3an3 1413 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
29 ovex 6678 . . . . . . . . 9 (𝑥 + 𝑦) ∈ V
30 eqeq1 2626 . . . . . . . . . 10 (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣)))
31302rexbidv 3057 . . . . . . . . 9 (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)))
3229, 31elab 3350 . . . . . . . 8 ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
3328, 32sylibr 224 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
3433adantl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
35 ffn 6045 . . . . . . . 8 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
365, 35syl 17 . . . . . . 7 (𝜑𝐹 Fn ℝ)
37 dffn3 6054 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3836, 37sylib 208 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
39 ffn 6045 . . . . . . . 8 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
408, 39syl 17 . . . . . . 7 (𝜑𝐺 Fn ℝ)
41 dffn3 6054 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4240, 41sylib 208 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4334, 38, 42, 10, 10, 11off 6912 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
44 frn 6053 . . . . 5 ((𝐹𝑓 + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} → ran (𝐹𝑓 + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4543, 44syl 17 . . . 4 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4619rnmpt2 6770 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}
4745, 46syl6sseqr 3652 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
48 ssfi 8180 . . 3 ((ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin ∧ ran (𝐹𝑓 + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝐹𝑓 + 𝐺) ∈ Fin)
4925, 47, 48syl2anc 693 . 2 (𝜑 → ran (𝐹𝑓 + 𝐺) ∈ Fin)
50 frn 6053 . . . . . . . 8 ((𝐹𝑓 + 𝐺):ℝ⟶ℝ → ran (𝐹𝑓 + 𝐺) ⊆ ℝ)
5112, 50syl 17 . . . . . . 7 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ ℝ)
5251ssdifssd 3748 . . . . . 6 (𝜑 → (ran (𝐹𝑓 + 𝐺) ∖ {0}) ⊆ ℝ)
5352sselda 3603 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → 𝑦 ∈ ℝ)
5453recnd 10068 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → 𝑦 ∈ ℂ)
553, 6i1faddlem 23460 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((𝐹𝑓 + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5654, 55syldan 487 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ((𝐹𝑓 + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5716adantr 481 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin)
583ad2antrr 762 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom ∫1)
59 i1fmbf 23442 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
6058, 59syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn)
615ad2antrr 762 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ)
6212ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹𝑓 + 𝐺):ℝ⟶ℝ)
6362, 50syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹𝑓 + 𝐺) ⊆ ℝ)
64 eldifi 3732 . . . . . . . . . 10 (𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹𝑓 + 𝐺))
6564ad2antlr 763 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹𝑓 + 𝐺))
6663, 65sseldd 3604 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ)
678adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ)
68 frn 6053 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → ran 𝐺 ⊆ ℝ)
6967, 68syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ran 𝐺 ⊆ ℝ)
7069sselda 3603 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
7166, 70resubcld 10458 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝑧) ∈ ℝ)
72 mbfimasn 23401 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (𝑦𝑧) ∈ ℝ) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
7360, 61, 71, 72syl3anc 1326 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
746ad2antrr 762 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom ∫1)
75 i1fmbf 23442 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺 ∈ MblFn)
7674, 75syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn)
778ad2antrr 762 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ)
78 mbfimasn 23401 . . . . . . 7 ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐺 “ {𝑧}) ∈ dom vol)
7976, 77, 70, 78syl3anc 1326 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ∈ dom vol)
80 inmbl 23310 . . . . . 6 (((𝐹 “ {(𝑦𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8173, 79, 80syl2anc 693 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8281ralrimiva 2966 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
83 finiunmbl 23312 . . . 4 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8457, 82, 83syl2anc 693 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8556, 84eqeltrd 2701 . 2 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ((𝐹𝑓 + 𝐺) “ {𝑦}) ∈ dom vol)
86 mblvol 23298 . . . 4 (((𝐹𝑓 + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹𝑓 + 𝐺) “ {𝑦})) = (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})))
8785, 86syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol‘((𝐹𝑓 + 𝐺) “ {𝑦})) = (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})))
88 mblss 23299 . . . . 5 (((𝐹𝑓 + 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ)
8985, 88syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ((𝐹𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ)
90 inss1 3833 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)})
9190a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)}))
9273adantrr 753 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
93 mblss 23299 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
9492, 93syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
95 mblvol 23298 . . . . . . . . . 10 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
9692, 95syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
97 simprr 796 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑧 = 0)
9897oveq2d 6666 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = (𝑦 − 0))
9954adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑦 ∈ ℂ)
10099subid1d 10381 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦 − 0) = 𝑦)
10198, 100eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = 𝑦)
102101sneqd 4189 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → {(𝑦𝑧)} = {𝑦})
103102imaeq2d 5466 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) = (𝐹 “ {𝑦}))
104103fveq2d 6195 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol‘(𝐹 “ {𝑦})))
105 i1fima2sn 23447 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
1063, 105sylan 488 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
107106adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
108104, 107eqeltrd 2701 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
10996, 108eqeltrrd 2702 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
110 ovolsscl 23254 . . . . . . . 8 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)}) ∧ (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
11191, 94, 109, 110syl3anc 1326 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
112111expr 643 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
113 eldifsn 4317 . . . . . . . 8 (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺𝑧 ≠ 0))
114 inss2 3834 . . . . . . . . . 10 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
115114a1i 11 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
116 eldifi 3732 . . . . . . . . . 10 (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺)
117 mblss 23299 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
11879, 117syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ⊆ ℝ)
119116, 118sylan2 491 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
120 i1fima 23445 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
1216, 120syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
122121ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
123 mblvol 23298 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
124122, 123syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
1256adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
126 i1fima2sn 23447 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
127125, 126sylan 488 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
128124, 127eqeltrrd 2702 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
129 ovolsscl 23254 . . . . . . . . 9 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
130115, 119, 128, 129syl3anc 1326 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
131113, 130sylan2br 493 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 ≠ 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
132131expr 643 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
133112, 132pm2.61dne 2880 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
13457, 133fsumrecl 14465 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
13556fveq2d 6195 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
136114, 118syl5ss 3614 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
137136, 133jca 554 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
138137ralrimiva 2966 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
139 ovolfiniun 23269 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
14057, 138, 139syl2anc 693 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
141135, 140eqbrtrd 4675 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
142 ovollecl 23251 . . . 4 ((((𝐹𝑓 + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})) ∈ ℝ)
14389, 134, 141, 142syl3anc 1326 . . 3 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol*‘((𝐹𝑓 + 𝐺) “ {𝑦})) ∈ ℝ)
14487, 143eqeltrd 2701 . 2 ((𝜑𝑦 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {0})) → (vol‘((𝐹𝑓 + 𝐺) “ {𝑦})) ∈ ℝ)
14512, 49, 85, 144i1fd 23448 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  {csn 4177   ciun 4520   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  Σcsu 14416  vol*covol 23231  volcvol 23232  MblFncmbf 23383  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg1addlem4  23466  i1fsub  23475  itg2splitlem  23515  itg2split  23516  itg2addlem  23525  itg2addnc  33464  ftc1anclem3  33487  ftc1anclem5  33489  ftc1anclem8  33492
  Copyright terms: Public domain W3C validator