| Step | Hyp | Ref
| Expression |
| 1 | | mplcoe5.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 2 | | mplcoe1.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 3 | | mplcoe1.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 4 | 3 | psrbag 19364 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑊 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
| 6 | 1, 5 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin)) |
| 7 | 6 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
| 8 | 7 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
| 9 | | iftrue 4092 |
. . . . . . . . 9
⊢ (𝑖 ∈ (◡𝑌 “ ℕ) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 10 | 9 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 11 | | eldif 3584 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) ↔ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) |
| 12 | | ifid 4125 |
. . . . . . . . . . 11
⊢ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = (𝑌‘𝑖) |
| 13 | | frnnn0supp 11349 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
| 14 | 2, 7, 13 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
| 15 | | eqimss 3657 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 supp 0) = (◡𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
| 17 | | c0ex 10034 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
V) |
| 19 | 7, 16, 2, 18 | suppssr 7326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑖) = 0) |
| 20 | 19 | ifeq2d 4105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
| 21 | 12, 20 | syl5reqr 2671 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 22 | 11, 21 | sylan2br 493 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 23 | 22 | anassrs 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 24 | 10, 23 | pm2.61dan 832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 25 | 24 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
| 26 | 8, 25 | eqtr4d 2659 |
. . . . 5
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
| 27 | 26 | eqeq2d 2632 |
. . . 4
⊢ (𝜑 → (𝑦 = 𝑌 ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
| 28 | 27 | ifbid 4108 |
. . 3
⊢ (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 29 | 28 | mpteq2dv 4745 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 30 | | cnvimass 5485 |
. . . . 5
⊢ (◡𝑌 “ ℕ) ⊆ dom 𝑌 |
| 31 | | fdm 6051 |
. . . . . 6
⊢ (𝑌:𝐼⟶ℕ0 → dom 𝑌 = 𝐼) |
| 32 | 7, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → dom 𝑌 = 𝐼) |
| 33 | 30, 32 | syl5sseq 3653 |
. . . 4
⊢ (𝜑 → (◡𝑌 “ ℕ) ⊆ 𝐼) |
| 34 | 6 | simprd 479 |
. . . . 5
⊢ (𝜑 → (◡𝑌 “ ℕ) ∈
Fin) |
| 35 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
| 36 | | noel 3919 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑖 ∈
∅ |
| 37 | | eleq2 2690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ∅)) |
| 38 | 36, 37 | mtbiri 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ∅ → ¬ 𝑖 ∈ 𝑤) |
| 39 | 38 | iffalsed 4097 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ∅ → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = 0) |
| 40 | 39 | mpteq2dv 4745 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ 0)) |
| 41 | | fconstmpt 5163 |
. . . . . . . . . . . . 13
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
| 42 | 40, 41 | syl6eqr 2674 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝐼 × {0})) |
| 43 | 42 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝐼 × {0}))) |
| 44 | 43 | ifbid 4108 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 )) |
| 45 | 44 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
| 46 | | mpteq1 4737 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 47 | | mpt0 6021 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅ |
| 48 | 46, 47 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅) |
| 49 | 48 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg
∅)) |
| 50 | | mplcoe2.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (mulGrp‘𝑃) |
| 51 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 52 | 50, 51 | ringidval 18503 |
. . . . . . . . . . 11
⊢
(1r‘𝑃) = (0g‘𝐺) |
| 53 | 52 | gsum0 17278 |
. . . . . . . . . 10
⊢ (𝐺 Σg
∅) = (1r‘𝑃) |
| 54 | 49, 53 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (1r‘𝑃)) |
| 55 | 45, 54 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
| 56 | 35, 55 | imbi12d 334 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)))) |
| 57 | 56 | imbi2d 330 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))))) |
| 58 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼)) |
| 59 | | eleq2 2690 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ 𝑥)) |
| 60 | 59 | ifbid 4108 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 61 | 60 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
| 62 | 61 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)))) |
| 63 | 62 | ifbid 4108 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) |
| 64 | 63 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 65 | | mpteq1 4737 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 66 | 65 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 67 | 64, 66 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 68 | 58, 67 | imbi12d 334 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 69 | 68 | imbi2d 330 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 70 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤 ⊆ 𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 71 | | eleq2 2690 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 72 | 71 | ifbid 4108 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 73 | 72 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 74 | 73 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
| 75 | 74 | ifbid 4108 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 76 | 75 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 77 | | mpteq1 4737 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 78 | 77 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 79 | 76, 78 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 80 | 70, 79 | imbi12d 334 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 81 | 80 | imbi2d 330 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 82 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑤 ⊆ 𝐼 ↔ (◡𝑌 “ ℕ) ⊆ 𝐼)) |
| 83 | | eleq2 2690 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (◡𝑌 “ ℕ))) |
| 84 | 83 | ifbid 4108 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
| 85 | 84 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
| 86 | 85 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
| 87 | 86 | ifbid 4108 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 88 | 87 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 89 | | mpteq1 4737 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 90 | 89 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 91 | 88, 90 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 92 | 82, 91 | imbi12d 334 |
. . . . . . 7
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 93 | 92 | imbi2d 330 |
. . . . . 6
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 94 | | mplcoe1.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 95 | | mplcoe1.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
| 96 | | mplcoe1.o |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 97 | | mplcoe5.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 98 | 94, 3, 95, 96, 51, 2, 97 | mpl1 19444 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑃) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
| 99 | 98 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)) |
| 100 | 99 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
| 101 | | ssun1 3776 |
. . . . . . . . . . 11
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
| 102 | | sstr2 3610 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼)) |
| 103 | 101, 102 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼) |
| 104 | 103 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 105 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 106 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 107 | 2 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ 𝑊) |
| 108 | 97 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring) |
| 109 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0) |
| 110 | 109 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑖) ∈
ℕ0) |
| 111 | | 0nn0 11307 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℕ0 |
| 112 | | ifcl 4130 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑌‘𝑖) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 113 | 110, 111,
112 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 114 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 115 | 113, 114 | fmptd 6385 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) |
| 116 | | frnnn0supp 11349 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
| 117 | 107, 115,
116 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
| 118 | | simprll 802 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin) |
| 119 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝐼 ∖ 𝑥) → ¬ 𝑖 ∈ 𝑥) |
| 120 | 119 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → ¬ 𝑖 ∈ 𝑥) |
| 121 | 120 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
| 122 | 121, 107 | suppss2 7329 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ⊆ 𝑥) |
| 123 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ Fin ∧ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ⊆ 𝑥) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ∈ Fin) |
| 124 | 118, 122,
123 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ∈ Fin) |
| 125 | 117, 124 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin) |
| 126 | 3 | psrbag 19364 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑊 → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
| 127 | 107, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
| 128 | 115, 125,
127 | mpbir2and 957 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷) |
| 129 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 130 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
| 131 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼) |
| 132 | 130, 131 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼) |
| 133 | | vex 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
| 134 | 133 | snss 4316 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐼 ↔ {𝑧} ⊆ 𝐼) |
| 135 | 132, 134 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧 ∈ 𝐼) |
| 136 | 109, 135 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌‘𝑧) ∈
ℕ0) |
| 137 | 3 | snifpsrbag 19366 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
| 138 | 107, 136,
137 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
| 139 | 94, 106, 95, 96, 3, 107, 108, 128, 129, 138 | mplmonmul 19464 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ))) |
| 140 | | mplcoe2.m |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
| 141 | | mplcoe2.v |
. . . . . . . . . . . . . . . 16
⊢ 𝑉 = (𝐼 mVar 𝑅) |
| 142 | 94, 3, 95, 96, 107, 50, 140, 141, 108, 135, 136 | mplcoe3 19466 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 )) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 143 | 142 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 144 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 145 | | ifcl 4130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑌‘𝑧) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
| 146 | 144, 111,
145 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
| 147 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
| 148 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) |
| 149 | 107, 113,
146, 147, 148 | offval2 6914 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)))) |
| 150 | 110 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈
ℕ0) |
| 151 | 150 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈ ℂ) |
| 152 | 151 | addid2d 10237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌‘𝑖)) = (𝑌‘𝑖)) |
| 153 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ {𝑧} → 𝑖 = 𝑧) |
| 154 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧) |
| 155 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧 ∈ 𝑥) |
| 156 | 155 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑥) |
| 157 | 154, 156 | eqneltrd 2720 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ 𝑥) |
| 158 | 157 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
| 159 | 154 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑧)) |
| 160 | 154 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) = (𝑌‘𝑧)) |
| 161 | 159, 160 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑖)) |
| 162 | 158, 161 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (0 + (𝑌‘𝑖))) |
| 163 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧}) |
| 164 | 130, 163 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 165 | 164 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 166 | 152, 162,
165 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 167 | 113 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 168 | 167 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈ ℂ) |
| 169 | 168 | addid1d 10236 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 170 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧}) |
| 171 | | velsn 4193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧) |
| 172 | 170, 171 | sylnib 318 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧) |
| 173 | 172 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = 0) |
| 174 | 173 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0)) |
| 175 | | biorf 420 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ 𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥))) |
| 176 | | elun 3753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧})) |
| 177 | | orcom 402 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
| 178 | 176, 177 | bitri 264 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
| 179 | 175, 178 | syl6rbbr 279 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
| 180 | 179 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
| 181 | 180 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 182 | 169, 174,
181 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 183 | 166, 182 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 184 | 183 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 185 | 149, 184 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 186 | 185 | eqeq2d 2632 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
| 187 | 186 | ifbid 4108 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 188 | 187 | mpteq2dv 4745 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘𝑓 + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 189 | 139, 143,
188 | 3eqtr3rd 2665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 190 | 50, 106 | mgpbas 18495 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑃) =
(Base‘𝐺) |
| 191 | 50, 129 | mgpplusg 18493 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑃) = (+g‘𝐺) |
| 192 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 193 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
| 194 | 94 | mplring 19452 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
| 195 | 2, 97, 194 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 196 | 50 | ringmgp 18553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
| 197 | 195, 196 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 198 | 197 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd) |
| 199 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌 ∈ 𝐷) |
| 200 | | mplcoe5.c |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
| 201 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑉‘𝑥) = (𝑉‘𝑎)) |
| 202 | 201 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎))) |
| 203 | 201 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦))) |
| 204 | 202, 203 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)))) |
| 205 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → (𝑉‘𝑦) = (𝑉‘𝑏)) |
| 206 | 205 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎))) |
| 207 | 205 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 208 | 206, 207 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏)))) |
| 209 | 204, 208 | cbvral2v 3179 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 210 | 200, 209 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 211 | 210 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 212 | 94, 3, 95, 96, 107, 50, 140, 141, 108, 199, 211, 131 | mplcoe5lem 19467 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 213 | 101, 131 | syl5ss 3614 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ⊆ 𝐼) |
| 214 | 213 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐼) |
| 215 | 197 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 216 | 7 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑌‘𝑘) ∈
ℕ0) |
| 217 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 218 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 219 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 220 | 94, 141, 106, 217, 218, 219 | mvrcl 19449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
| 221 | 190, 140 | mulgnn0cl 17558 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Mnd ∧ (𝑌‘𝑘) ∈ ℕ0 ∧ (𝑉‘𝑘) ∈ (Base‘𝑃)) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 222 | 215, 216,
220, 221 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 223 | 222 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 224 | 214, 223 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 225 | 94, 141, 106, 107, 108, 135 | mvrcl 19449 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉‘𝑧) ∈ (Base‘𝑃)) |
| 226 | 190, 140 | mulgnn0cl 17558 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Mnd ∧ (𝑌‘𝑧) ∈ ℕ0 ∧ (𝑉‘𝑧) ∈ (Base‘𝑃)) → ((𝑌‘𝑧) ↑ (𝑉‘𝑧)) ∈ (Base‘𝑃)) |
| 227 | 198, 136,
225, 226 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌‘𝑧) ↑ (𝑉‘𝑧)) ∈ (Base‘𝑃)) |
| 228 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑌‘𝑘) = (𝑌‘𝑧)) |
| 229 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑉‘𝑘) = (𝑉‘𝑧)) |
| 230 | 228, 229 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 231 | 230 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 232 | 190, 191,
192, 193, 198, 118, 212, 224, 135, 155, 227, 231 | gsumzunsnd 18355 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 233 | 189, 232 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))))) |
| 234 | 105, 233 | syl5ibr 236 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 235 | 234 | expr 643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 236 | 235 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 237 | 104, 236 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 238 | 237 | expcom 451 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 239 | 238 | a2d 29 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 240 | 57, 69, 81, 93, 100, 239 | findcard2s 8201 |
. . . . 5
⊢ ((◡𝑌 “ ℕ) ∈ Fin → (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 241 | 34, 240 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 242 | 33, 241 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 243 | 33 | resmptd 5452 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ)) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 244 | 243 | oveq2d 6666 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 245 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
| 246 | 222, 245 | fmptd 6385 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))):𝐼⟶(Base‘𝑃)) |
| 247 | | ssid 3624 |
. . . . . 6
⊢ 𝐼 ⊆ 𝐼 |
| 248 | 247 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐼 ⊆ 𝐼) |
| 249 | 94, 3, 95, 96, 2, 50, 140, 141, 97, 1, 200, 248 | mplcoe5lem 19467 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 250 | 7, 16, 2, 18 | suppssr 7326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑘) = 0) |
| 251 | 250 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (0 ↑ (𝑉‘𝑘))) |
| 252 | | eldifi 3732 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) → 𝑘 ∈ 𝐼) |
| 253 | 252, 220 | sylan2 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
| 254 | 190, 52, 140 | mulg0 17546 |
. . . . . . 7
⊢ ((𝑉‘𝑘) ∈ (Base‘𝑃) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 255 | 253, 254 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 256 | 251, 255 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 257 | 256, 2 | suppss2 7329 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ)) |
| 258 | | mptexg 6484 |
. . . . . 6
⊢ (𝐼 ∈ 𝑊 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V) |
| 259 | 2, 258 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V) |
| 260 | | funmpt 5926 |
. . . . . 6
⊢ Fun
(𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
| 261 | 260 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 262 | | fvexd 6203 |
. . . . 5
⊢ (𝜑 → (1r‘𝑃) ∈ V) |
| 263 | | suppssfifsupp 8290 |
. . . . 5
⊢ ((((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V ∧ Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∧ (1r‘𝑃) ∈ V) ∧ ((◡𝑌 “ ℕ) ∈ Fin ∧ ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ))) → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
| 264 | 259, 261,
262, 34, 257, 263 | syl32anc 1334 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
| 265 | 190, 52, 192, 197, 2, 246, 249, 257, 264 | gsumzres 18310 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 266 | 242, 244,
265 | 3eqtr2d 2662 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 267 | 29, 266 | eqtrd 2656 |
1
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |