| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | fsumcn.5 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 3 | | sseq1 3626 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 5 | 4 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵)) |
| 6 | 5 | eleq1d 2686 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 7 | 3, 6 | imbi12d 334 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 8 | 7 | imbi2d 330 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 9 | | sseq1 3626 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) |
| 10 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) |
| 11 | 10 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵)) |
| 12 | 11 | eleq1d 2686 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 13 | 9, 12 | imbi12d 334 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 14 | 13 | imbi2d 330 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 15 | | sseq1 3626 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) |
| 16 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 17 | 16 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
| 18 | 17 | eleq1d 2686 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))) |
| 19 | 15, 18 | imbi12d 334 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 20 | 19 | imbi2d 330 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 21 | | sseq1 3626 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 22 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| 23 | 22 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵)) |
| 24 | 23 | eleq1d 2686 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 25 | 21, 24 | imbi12d 334 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 26 | 25 | imbi2d 330 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 27 | | sum0 14452 |
. . . . . . 7
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 28 | 27 | mpteq2i 4741 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥 ∈ 𝑋 ↦ 0) |
| 29 | | fsumcn.4 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | | fsumcn.3 |
. . . . . . . . 9
⊢ 𝐾 =
(TopOpen‘ℂfld) |
| 31 | 30 | cnfldtopon 22586 |
. . . . . . . 8
⊢ 𝐾 ∈
(TopOn‘ℂ) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
| 33 | | 0cnd 10033 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℂ) |
| 34 | 29, 32, 33 | cnmptc 21465 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾)) |
| 35 | 28, 34 | syl5eqel 2705 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 36 | 35 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 37 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 38 | | sstr 3611 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
| 39 | 37, 38 | mpan 706 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → 𝑦 ⊆ 𝐴) |
| 40 | 39 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 41 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ¬ 𝑧 ∈ 𝑦) |
| 42 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 43 | 41, 42 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∩ {𝑧}) = ∅) |
| 44 | | eqidd 2623 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 45 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → 𝐴 ∈ Fin) |
| 46 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 47 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 48 | 45, 46, 47 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 49 | | simplll 798 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑) |
| 50 | 46 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐴) |
| 51 | | simplrr 801 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ 𝑋) |
| 52 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
| 53 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈
(TopOn‘ℂ)) |
| 54 | | fsumcn.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 55 | | cnf2 21053 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 56 | 52, 53, 54, 55 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 57 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 58 | 57 | fmpt 6381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 59 | 56, 58 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
| 60 | | rsp 2929 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
| 62 | 61 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 63 | 49, 50, 51, 62 | syl21anc 1325 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ) |
| 64 | 43, 44, 48, 63 | fsumsplit 14471 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵)) |
| 65 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 66 | 65 | unssbd 3791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴) |
| 67 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
| 68 | 67 | snss 4316 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 69 | 66, 68 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧 ∈ 𝐴) |
| 70 | 69 | adantrr 753 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝐴) |
| 71 | 61 | impancom 456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐴 → 𝐵 ∈ ℂ)) |
| 72 | 71 | ralrimiv 2965 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 73 | 72 | ad2ant2rl 785 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 74 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
| 75 | 74 | nfel1 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
| 76 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 77 | 76 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
| 78 | 75, 77 | rspc 3303 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
| 79 | 70, 73, 78 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
| 80 | | sumsns 14479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 81 | 70, 79, 80 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 82 | 81 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 83 | 64, 82 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 84 | 83 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 85 | 84 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
| 86 | 85 | adantrr 753 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
| 87 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) |
| 88 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝑦 |
| 89 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 |
| 90 | 88, 89 | nfsum 14421 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 |
| 91 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥
+ |
| 92 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝑧 |
| 93 | 92, 89 | nfcsb 3551 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵 |
| 94 | 90, 91, 93 | nfov 6676 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 95 | | csbeq1a 3542 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) |
| 96 | 95 | sumeq2sdv 14435 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
| 97 | 95 | csbeq2dv 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → ⦋𝑧 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 98 | 96, 97 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) = (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
| 99 | 87, 94, 98 | cbvmpt 4749 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
| 100 | 86, 99 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵))) |
| 101 | 29 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 102 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤Σ𝑘 ∈ 𝑦 𝐵 |
| 103 | 102, 90, 96 | cbvmpt 4749 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) = (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
| 104 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 105 | 103, 104 | syl5eqelr 2706 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 106 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤⦋𝑧 / 𝑘⦌𝐵 |
| 107 | 106, 93, 97 | cbvmpt 4749 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) = (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 108 | 69 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧 ∈ 𝐴) |
| 109 | 54 | ralrimiva 2966 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 110 | 109 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 111 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑋 |
| 112 | 111, 74 | nfmpt 4746 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) |
| 113 | 112 | nfel1 2779 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
| 114 | 76 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵)) |
| 115 | 114 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 116 | 113, 115 | rspc 3303 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 117 | 108, 110,
116 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 118 | 107, 117 | syl5eqelr 2706 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 119 | 30 | addcn 22668 |
. . . . . . . . . . . . 13
⊢ + ∈
((𝐾 ×t
𝐾) Cn 𝐾) |
| 120 | 119 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 121 | 101, 105,
118, 120 | cnmpt12f 21469 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
| 122 | 100, 121 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)) |
| 123 | 122 | exp32 631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 124 | 123 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 125 | 40, 124 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 126 | 125 | expcom 451 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 127 | 126 | adantl 482 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜑 → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 128 | 127 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 129 | 8, 14, 20, 26, 36, 128 | findcard2s 8201 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 130 | 2, 129 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 131 | 1, 130 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |