| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. 2
⊢ 𝐼 ⊆ 𝐼 |
| 2 | | dvmptfsum.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 3 | | sseq1 3626 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
| 4 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ ∅ 𝐴) |
| 5 | 4 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) |
| 6 | 5 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴))) |
| 7 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑎 = ∅ → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ ∅ 𝐵) |
| 8 | 7 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)) |
| 9 | 6, 8 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))) |
| 10 | 3, 9 | imbi12d 334 |
. . . . 5
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))) |
| 11 | 10 | imbi2d 330 |
. . . 4
⊢ (𝑎 = ∅ → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))))) |
| 12 | | sseq1 3626 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼)) |
| 13 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ 𝑏 𝐴) |
| 14 | 13 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) |
| 15 | 14 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴))) |
| 16 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ 𝑏 𝐵) |
| 17 | 16 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) |
| 18 | 15, 17 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) |
| 19 | 12, 18 | imbi12d 334 |
. . . . 5
⊢ (𝑎 = 𝑏 → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)))) |
| 20 | 19 | imbi2d 330 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))))) |
| 21 | | sseq1 3626 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ 𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) |
| 22 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) |
| 23 | 22 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) |
| 24 | 23 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))) |
| 25 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) |
| 26 | 25 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)) |
| 27 | 24, 26 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))) |
| 28 | 21, 27 | imbi12d 334 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
| 29 | 28 | imbi2d 330 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
| 30 | | sseq1 3626 |
. . . . . 6
⊢ (𝑎 = 𝐼 → (𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼)) |
| 31 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑎 = 𝐼 → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ 𝐼 𝐴) |
| 32 | 31 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) |
| 33 | 32 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴))) |
| 34 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ 𝐼 𝐵) |
| 35 | 34 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |
| 36 | 33, 35 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑎 = 𝐼 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))) |
| 37 | 30, 36 | imbi12d 334 |
. . . . 5
⊢ (𝑎 = 𝐼 → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)))) |
| 38 | 37 | imbi2d 330 |
. . . 4
⊢ (𝑎 = 𝐼 → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))))) |
| 39 | | dvmptfsum.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 40 | | 0cnd 10033 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) |
| 41 | | 0cnd 10033 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℂ) |
| 42 | 39, 41 | dvmptc 23721 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 0)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 43 | | dvmptfsum.j |
. . . . . . . . 9
⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| 44 | | dvmptfsum.k |
. . . . . . . . . . 11
⊢ 𝐾 =
(TopOpen‘ℂfld) |
| 45 | 44 | cnfldtopon 22586 |
. . . . . . . . . 10
⊢ 𝐾 ∈
(TopOn‘ℂ) |
| 46 | | recnprss 23668 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 47 | 39, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 48 | | resttopon 20965 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐾
↾t 𝑆)
∈ (TopOn‘𝑆)) |
| 49 | 45, 47, 48 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 50 | 43, 49 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 51 | | dvmptfsum.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 52 | | toponss 20731 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑆) ∧ 𝑋 ∈ 𝐽) → 𝑋 ⊆ 𝑆) |
| 53 | 50, 51, 52 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 54 | 39, 40, 40, 42, 53, 43, 44, 51 | dvmptres 23726 |
. . . . . 6
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 55 | | sum0 14452 |
. . . . . . . 8
⊢
Σ𝑖 ∈
∅ 𝐴 =
0 |
| 56 | 55 | mpteq2i 4741 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴) = (𝑥 ∈ 𝑋 ↦ 0) |
| 57 | 56 | oveq2i 6661 |
. . . . . 6
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) |
| 58 | | sum0 14452 |
. . . . . . 7
⊢
Σ𝑖 ∈
∅ 𝐵 =
0 |
| 59 | 58 | mpteq2i 4741 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵) = (𝑥 ∈ 𝑋 ↦ 0) |
| 60 | 54, 57, 59 | 3eqtr4g 2681 |
. . . . 5
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)) |
| 61 | 60 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))) |
| 62 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
| 63 | | sstr 3611 |
. . . . . . . . . 10
⊢ ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏 ⊆ 𝐼) |
| 64 | 62, 63 | mpan 706 |
. . . . . . . . 9
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑏 ⊆ 𝐼) |
| 65 | 64 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) |
| 66 | | simpll 790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝜑) |
| 67 | 66, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝑆 ∈ {ℝ, ℂ}) |
| 68 | 2 | ad3antrrr 766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝐼 ∈ Fin) |
| 69 | 64 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑏 ⊆ 𝐼) |
| 70 | | ssfi 8180 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼) → 𝑏 ∈ Fin) |
| 71 | 68, 69, 70 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑏 ∈ Fin) |
| 72 | | simp-4l 806 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝜑) |
| 73 | 69 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝑖 ∈ 𝐼) |
| 74 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝑎 ∈ 𝑋) |
| 75 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) |
| 76 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐴 |
| 77 | 76 | nfel1 2779 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ |
| 78 | 75, 77 | nfim 1825 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 79 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝑋 ↔ 𝑎 ∈ 𝑋)) |
| 80 | 79 | 3anbi3d 1405 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋))) |
| 81 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → 𝐴 = ⦋𝑎 / 𝑥⦌𝐴) |
| 82 | 81 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝐴 ∈ ℂ ↔ ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
| 83 | 80, 82 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ))) |
| 84 | | dvmptfsum.a |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 85 | 78, 83, 84 | chvar 2262 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 86 | 72, 73, 74, 85 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 87 | 71, 86 | fsumcl 14464 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 88 | 87 | adantlrr 757 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 89 | | sumex 14418 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
𝑏 ⦋𝑎 / 𝑥⦌𝐵 ∈ V |
| 90 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 ∈ V) |
| 91 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎Σ𝑖 ∈ 𝑏 𝐴 |
| 92 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑏 |
| 93 | 92, 76 | nfsum 14421 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 |
| 94 | 81 | sumeq2sdv 14435 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ 𝑏 𝐴 = Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴) |
| 95 | 91, 93, 94 | cbvmpt 4749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴) |
| 96 | 95 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) |
| 97 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎Σ𝑖 ∈ 𝑏 𝐵 |
| 98 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 |
| 99 | 92, 98 | nfsum 14421 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 |
| 100 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → 𝐵 = ⦋𝑎 / 𝑥⦌𝐵) |
| 101 | 100 | sumeq2sdv 14435 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ 𝑏 𝐵 = Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵) |
| 102 | 97, 99, 101 | cbvmpt 4749 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵) |
| 103 | 96, 102 | eqeq12i 2636 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) ↔ (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
| 104 | 103 | biimpi 206 |
. . . . . . . . . . . . 13
⊢ ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) → (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
| 105 | 104 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
| 106 | | simplll 798 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝜑) |
| 107 | | ssun2 3777 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑐} ⊆ (𝑏 ∪ {𝑐}) |
| 108 | | sstr 3611 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → {𝑐} ⊆ 𝐼) |
| 109 | 107, 108 | mpan 706 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → {𝑐} ⊆ 𝐼) |
| 110 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑐 ∈ V |
| 111 | 110 | snss 4316 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝐼 ↔ {𝑐} ⊆ 𝐼) |
| 112 | 109, 111 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑐 ∈ 𝐼) |
| 113 | 112 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑐 ∈ 𝐼) |
| 114 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ 𝑋) |
| 115 | 84 | 3expb 1266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝐴 ∈ ℂ) |
| 116 | 115 | ancom2s 844 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼)) → 𝐴 ∈ ℂ) |
| 117 | 116 | ralrimivva 2971 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ) |
| 118 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 |
| 119 | 118 | nfel1 2779 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ |
| 120 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → ⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
| 121 | 120 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ ↔ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
| 122 | 77, 119, 82, 121 | rspc2 3320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
| 123 | 122 | ancoms 469 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
| 124 | 117, 123 | mpan9 486 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋)) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 125 | 106, 113,
114, 124 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 126 | 125 | adantlrr 757 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 127 | | dvmptfsum.b |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 128 | 127 | 3expb 1266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝐵 ∈ ℂ) |
| 129 | 128 | ancom2s 844 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼)) → 𝐵 ∈ ℂ) |
| 130 | 129 | ralrimivva 2971 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ) |
| 131 | 98 | nfel1 2779 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ |
| 132 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 |
| 133 | 132 | nfel1 2779 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ |
| 134 | 100 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝐵 ∈ ℂ ↔ ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
| 135 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
| 136 | 135 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ ↔ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
| 137 | 131, 133,
134, 136 | rspc2 3320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
| 138 | 137 | ancoms 469 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
| 139 | 130, 138 | mpan9 486 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋)) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 140 | 106, 113,
114, 139 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 141 | 140 | adantlrr 757 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 142 | 112 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝑐 ∈ 𝐼) |
| 143 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝜑 ∧ 𝑐 ∈ 𝐼) |
| 144 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖𝑆 |
| 145 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖
D |
| 146 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖𝑋 |
| 147 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌𝐴 |
| 148 | 146, 147 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴) |
| 149 | 144, 145,
148 | nfov 6676 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
| 150 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌𝐵 |
| 151 | 146, 150 | nfmpt 4746 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) |
| 152 | 149, 151 | nfeq 2776 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) |
| 153 | 143, 152 | nfim 1825 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
| 154 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑖 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼)) |
| 155 | 154 | anbi2d 740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑐 → ((𝜑 ∧ 𝑖 ∈ 𝐼) ↔ (𝜑 ∧ 𝑐 ∈ 𝐼))) |
| 156 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑐 → 𝐴 = ⦋𝑐 / 𝑖⦌𝐴) |
| 157 | 156 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
| 158 | 157 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴))) |
| 159 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → 𝐵 = ⦋𝑐 / 𝑖⦌𝐵) |
| 160 | 159 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
| 161 | 158, 160 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑐 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵))) |
| 162 | 155, 161 | imbi12d 334 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑐 → (((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)))) |
| 163 | | dvmptfsum.d |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 164 | 153, 162,
163 | chvar 2262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
| 165 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎⦋𝑐 / 𝑖⦌𝐴 |
| 166 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑐 |
| 167 | 166, 76 | nfcsb 3551 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 |
| 168 | 81 | csbeq2dv 3992 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → ⦋𝑐 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
| 169 | 165, 167,
168 | cbvmpt 4749 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
| 170 | 169 | oveq2i 6661 |
. . . . . . . . . . . . . 14
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
| 171 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎⦋𝑐 / 𝑖⦌𝐵 |
| 172 | 166, 98 | nfcsb 3551 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 |
| 173 | 100 | csbeq2dv 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → ⦋𝑐 / 𝑖⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
| 174 | 171, 172,
173 | cbvmpt 4749 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
| 175 | 164, 170,
174 | 3eqtr3g 2679 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
| 176 | 66, 142, 175 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
| 177 | 67, 88, 90, 105, 126, 141, 176 | dvmptadd 23723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
| 178 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 |
| 179 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑏 ∪ {𝑐}) |
| 180 | 179, 76 | nfsum 14421 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 |
| 181 | 81 | sumeq2sdv 14435 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) |
| 182 | 178, 180,
181 | cbvmpt 4749 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) |
| 183 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ¬ 𝑐 ∈ 𝑏) |
| 184 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑏) |
| 185 | 183, 184 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∩ {𝑐}) = ∅) |
| 186 | | eqidd 2623 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) = (𝑏 ∪ {𝑐})) |
| 187 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
| 188 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ Fin ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑏 ∪ {𝑐}) ∈ Fin) |
| 189 | 68, 187, 188 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) ∈ Fin) |
| 190 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝜑) |
| 191 | 187 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑖 ∈ 𝐼) |
| 192 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 ∈ 𝑋) |
| 193 | 190, 191,
192, 85 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
| 194 | 185, 186,
189, 193 | fsumsplit 14471 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴)) |
| 195 | | sumsns 14479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ V ∧
⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
| 196 | 110, 125,
195 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
| 197 | 196 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴) = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
| 198 | 194, 197 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
| 199 | 198 | mpteq2dva 4744 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
| 200 | 182, 199 | syl5eq 2668 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
| 201 | 200 | adantrr 753 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
| 202 | 201 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)))) |
| 203 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 |
| 204 | 179, 98 | nfsum 14421 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 |
| 205 | 100 | sumeq2sdv 14435 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) |
| 206 | 203, 204,
205 | cbvmpt 4749 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) |
| 207 | 75, 131 | nfim 1825 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 208 | 80, 134 | imbi12d 334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ))) |
| 209 | 207, 208,
127 | chvar 2262 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 210 | 190, 191,
192, 209 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
| 211 | 185, 186,
189, 210 | fsumsplit 14471 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵)) |
| 212 | | sumsns 14479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ V ∧
⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
| 213 | 110, 140,
212 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
| 214 | 213 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵) = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
| 215 | 211, 214 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
| 216 | 215 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
| 217 | 206, 216 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
| 218 | 217 | adantrr 753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
| 219 | 177, 202,
218 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)) |
| 220 | 219 | exp32 631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
| 221 | 220 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → (((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
| 222 | 65, 221 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
| 223 | 222 | expcom 451 |
. . . . . 6
⊢ (¬
𝑐 ∈ 𝑏 → (𝜑 → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
| 224 | 223 | adantl 482 |
. . . . 5
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (𝜑 → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
| 225 | 224 | a2d 29 |
. . . 4
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝜑 → (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
| 226 | 11, 20, 29, 38, 61, 225 | findcard2s 8201 |
. . 3
⊢ (𝐼 ∈ Fin → (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)))) |
| 227 | 2, 226 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))) |
| 228 | 1, 227 | mpi 20 |
1
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |