MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptfsum Structured version   Visualization version   GIF version

Theorem dvmptfsum 23738
Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
dvmptfsum.j 𝐽 = (𝐾t 𝑆)
dvmptfsum.k 𝐾 = (TopOpen‘ℂfld)
dvmptfsum.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfsum.x (𝜑𝑋𝐽)
dvmptfsum.i (𝜑𝐼 ∈ Fin)
dvmptfsum.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfsum.b ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
dvmptfsum.d ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptfsum (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Distinct variable groups:   𝑥,𝑖,𝐼   𝜑,𝑖,𝑥   𝑆,𝑖,𝑥   𝑖,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝐵(𝑥,𝑖)   𝐽(𝑥,𝑖)   𝐾(𝑥,𝑖)

Proof of Theorem dvmptfsum
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . 2 𝐼𝐼
2 dvmptfsum.i . . 3 (𝜑𝐼 ∈ Fin)
3 sseq1 3626 . . . . . 6 (𝑎 = ∅ → (𝑎𝐼 ↔ ∅ ⊆ 𝐼))
4 sumeq1 14419 . . . . . . . . 9 (𝑎 = ∅ → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ ∅ 𝐴)
54mpteq2dv 4745 . . . . . . . 8 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴))
65oveq2d 6666 . . . . . . 7 (𝑎 = ∅ → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)))
7 sumeq1 14419 . . . . . . . 8 (𝑎 = ∅ → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ ∅ 𝐵)
87mpteq2dv 4745 . . . . . . 7 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
96, 8eqeq12d 2637 . . . . . 6 (𝑎 = ∅ → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
103, 9imbi12d 334 . . . . 5 (𝑎 = ∅ → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))))
1110imbi2d 330 . . . 4 (𝑎 = ∅ → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))))
12 sseq1 3626 . . . . . 6 (𝑎 = 𝑏 → (𝑎𝐼𝑏𝐼))
13 sumeq1 14419 . . . . . . . . 9 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐴 = Σ𝑖𝑏 𝐴)
1413mpteq2dv 4745 . . . . . . . 8 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴))
1514oveq2d 6666 . . . . . . 7 (𝑎 = 𝑏 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)))
16 sumeq1 14419 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐵 = Σ𝑖𝑏 𝐵)
1716mpteq2dv 4745 . . . . . . 7 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))
1815, 17eqeq12d 2637 . . . . . 6 (𝑎 = 𝑏 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
1912, 18imbi12d 334 . . . . 5 (𝑎 = 𝑏 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))))
2019imbi2d 330 . . . 4 (𝑎 = 𝑏 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))))
21 sseq1 3626 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
22 sumeq1 14419 . . . . . . . . 9 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)
2322mpteq2dv 4745 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))
2423oveq2d 6666 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)))
25 sumeq1 14419 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)
2625mpteq2dv 4745 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
2724, 26eqeq12d 2637 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))
2821, 27imbi12d 334 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
2928imbi2d 330 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
30 sseq1 3626 . . . . . 6 (𝑎 = 𝐼 → (𝑎𝐼𝐼𝐼))
31 sumeq1 14419 . . . . . . . . 9 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐴 = Σ𝑖𝐼 𝐴)
3231mpteq2dv 4745 . . . . . . . 8 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴))
3332oveq2d 6666 . . . . . . 7 (𝑎 = 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)))
34 sumeq1 14419 . . . . . . . 8 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐵 = Σ𝑖𝐼 𝐵)
3534mpteq2dv 4745 . . . . . . 7 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
3633, 35eqeq12d 2637 . . . . . 6 (𝑎 = 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
3730, 36imbi12d 334 . . . . 5 (𝑎 = 𝐼 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
3837imbi2d 330 . . . 4 (𝑎 = 𝐼 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))))
39 dvmptfsum.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
40 0cnd 10033 . . . . . . 7 ((𝜑𝑥𝑆) → 0 ∈ ℂ)
41 0cnd 10033 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4239, 41dvmptc 23721 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑆 ↦ 0)) = (𝑥𝑆 ↦ 0))
43 dvmptfsum.j . . . . . . . . 9 𝐽 = (𝐾t 𝑆)
44 dvmptfsum.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
4544cnfldtopon 22586 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
46 recnprss 23668 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4739, 46syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
48 resttopon 20965 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
4945, 47, 48sylancr 695 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
5043, 49syl5eqel 2705 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
51 dvmptfsum.x . . . . . . . 8 (𝜑𝑋𝐽)
52 toponss 20731 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑆) ∧ 𝑋𝐽) → 𝑋𝑆)
5350, 51, 52syl2anc 693 . . . . . . 7 (𝜑𝑋𝑆)
5439, 40, 40, 42, 53, 43, 44, 51dvmptres 23726 . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
55 sum0 14452 . . . . . . . 8 Σ𝑖 ∈ ∅ 𝐴 = 0
5655mpteq2i 4741 . . . . . . 7 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴) = (𝑥𝑋 ↦ 0)
5756oveq2i 6661 . . . . . 6 (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 0))
58 sum0 14452 . . . . . . 7 Σ𝑖 ∈ ∅ 𝐵 = 0
5958mpteq2i 4741 . . . . . 6 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
6054, 57, 593eqtr4g 2681 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
6160a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
62 ssun1 3776 . . . . . . . . . 10 𝑏 ⊆ (𝑏 ∪ {𝑐})
63 sstr 3611 . . . . . . . . . 10 ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏𝐼)
6462, 63mpan 706 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼)
6564imim1i 63 . . . . . . . 8 ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
66 simpll 790 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝜑)
6766, 39syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑆 ∈ {ℝ, ℂ})
682ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝐼 ∈ Fin)
6964ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏𝐼)
70 ssfi 8180 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → 𝑏 ∈ Fin)
7168, 69, 70syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏 ∈ Fin)
72 simp-4l 806 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝜑)
7369sselda 3603 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑖𝐼)
74 simplr 792 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎𝑋)
75 nfv 1843 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖𝐼𝑎𝑋)
76 nfcsb1v 3549 . . . . . . . . . . . . . . . . . 18 𝑥𝑎 / 𝑥𝐴
7776nfel1 2779 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐴 ∈ ℂ
7875, 77nfim 1825 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
79 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝑥𝑋𝑎𝑋))
80793anbi3d 1405 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝑖𝐼𝑎𝑋)))
81 csbeq1a 3542 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
8281eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐴 ∈ ℂ ↔ 𝑎 / 𝑥𝐴 ∈ ℂ))
8380, 82imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)))
84 dvmptfsum.a . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
8578, 83, 84chvar 2262 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8672, 73, 74, 85syl3anc 1326 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8771, 86fsumcl 14464 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
8887adantlrr 757 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
89 sumex 14418 . . . . . . . . . . . . 13 Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V
9089a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V)
91 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑎Σ𝑖𝑏 𝐴
92 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑥𝑏
9392, 76nfsum 14421 . . . . . . . . . . . . . . . . 17 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐴
9481sumeq2sdv 14435 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐴 = Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9591, 93, 94cbvmpt 4749 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9695oveq2i 6661 . . . . . . . . . . . . . . 15 (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴))
97 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑎Σ𝑖𝑏 𝐵
98 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵
9992, 98nfsum 14421 . . . . . . . . . . . . . . . 16 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐵
100 csbeq1a 3542 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
101100sumeq2sdv 14435 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐵 = Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10297, 99, 101cbvmpt 4749 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10396, 102eqeq12i 2636 . . . . . . . . . . . . . 14 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) ↔ (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
104103biimpi 206 . . . . . . . . . . . . 13 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
105104ad2antll 765 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
106 simplll 798 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝜑)
107 ssun2 3777 . . . . . . . . . . . . . . . . 17 {𝑐} ⊆ (𝑏 ∪ {𝑐})
108 sstr 3611 . . . . . . . . . . . . . . . . 17 (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → {𝑐} ⊆ 𝐼)
109107, 108mpan 706 . . . . . . . . . . . . . . . 16 ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → {𝑐} ⊆ 𝐼)
110 vex 3203 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
111110snss 4316 . . . . . . . . . . . . . . . 16 (𝑐𝐼 ↔ {𝑐} ⊆ 𝐼)
112109, 111sylibr 224 . . . . . . . . . . . . . . 15 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐𝐼)
113112ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐𝐼)
114 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑎𝑋)
115843expb 1266 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐴 ∈ ℂ)
116115ancom2s 844 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐴 ∈ ℂ)
117116ralrimivva 2971 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ)
118 nfcsb1v 3549 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴
119118nfel1 2779 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ
120 csbeq1a 3542 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
121120eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐴 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
12277, 119, 82, 121rspc2 3320 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
123122ancoms 469 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
124117, 123mpan9 486 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
125106, 113, 114, 124syl12anc 1324 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
126125adantlrr 757 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
127 dvmptfsum.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
1281273expb 1266 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐵 ∈ ℂ)
129128ancom2s 844 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐵 ∈ ℂ)
130129ralrimivva 2971 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ)
13198nfel1 2779 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵 ∈ ℂ
132 nfcsb1v 3549 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵
133132nfel1 2779 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ
134100eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑥𝐵 ∈ ℂ))
135 csbeq1a 3542 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
136135eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐵 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
137131, 133, 134, 136rspc2 3320 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
138137ancoms 469 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
139130, 138mpan9 486 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
140106, 113, 114, 139syl12anc 1324 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
141140adantlrr 757 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
142112ad2antrl 764 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑐𝐼)
143 nfv 1843 . . . . . . . . . . . . . . . 16 𝑖(𝜑𝑐𝐼)
144 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑖𝑆
145 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑖 D
146 nfcv 2764 . . . . . . . . . . . . . . . . . . 19 𝑖𝑋
147 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . 19 𝑖𝑐 / 𝑖𝐴
148146, 147nfmpt 4746 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥𝑋𝑐 / 𝑖𝐴)
149144, 145, 148nfov 6676 . . . . . . . . . . . . . . . . 17 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴))
150 nfcsb1v 3549 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝐵
151146, 150nfmpt 4746 . . . . . . . . . . . . . . . . 17 𝑖(𝑥𝑋𝑐 / 𝑖𝐵)
152149, 151nfeq 2776 . . . . . . . . . . . . . . . 16 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)
153143, 152nfim 1825 . . . . . . . . . . . . . . 15 𝑖((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
154 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑖𝐼𝑐𝐼))
155154anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝜑𝑖𝐼) ↔ (𝜑𝑐𝐼)))
156 csbeq1a 3542 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑐𝐴 = 𝑐 / 𝑖𝐴)
157156mpteq2dv 4745 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐 → (𝑥𝑋𝐴) = (𝑥𝑋𝑐 / 𝑖𝐴))
158157oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)))
159 csbeq1a 3542 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝐵 = 𝑐 / 𝑖𝐵)
160159mpteq2dv 4745 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑥𝑋𝐵) = (𝑥𝑋𝑐 / 𝑖𝐵))
161158, 160eqeq12d 2637 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵) ↔ (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)))
162155, 161imbi12d 334 . . . . . . . . . . . . . . 15 (𝑖 = 𝑐 → (((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))))
163 dvmptfsum.d . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
164153, 162, 163chvar 2262 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
165 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑎𝑐 / 𝑖𝐴
166 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑥𝑐
167166, 76nfcsb 3551 . . . . . . . . . . . . . . . 16 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐴
16881csbeq2dv 3992 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑐 / 𝑖𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
169165, 167, 168cbvmpt 4749 . . . . . . . . . . . . . . 15 (𝑥𝑋𝑐 / 𝑖𝐴) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)
170169oveq2i 6661 . . . . . . . . . . . . . 14 (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴))
171 nfcv 2764 . . . . . . . . . . . . . . 15 𝑎𝑐 / 𝑖𝐵
172166, 98nfcsb 3551 . . . . . . . . . . . . . . 15 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐵
173100csbeq2dv 3992 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎𝑐 / 𝑖𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
174171, 172, 173cbvmpt 4749 . . . . . . . . . . . . . 14 (𝑥𝑋𝑐 / 𝑖𝐵) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵)
175164, 170, 1743eqtr3g 2679 . . . . . . . . . . . . 13 ((𝜑𝑐𝐼) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17666, 142, 175syl2anc 693 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17767, 88, 90, 105, 126, 141, 176dvmptadd 23723 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
178 nfcv 2764 . . . . . . . . . . . . . . 15 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴
179 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑥(𝑏 ∪ {𝑐})
180179, 76nfsum 14421 . . . . . . . . . . . . . . 15 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴
18181sumeq2sdv 14435 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
182178, 180, 181cbvmpt 4749 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
183 simpllr 799 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → ¬ 𝑐𝑏)
184 disjsn 4246 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
185183, 184sylibr 224 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∩ {𝑐}) = ∅)
186 eqidd 2623 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) = (𝑏 ∪ {𝑐}))
187 simplr 792 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
188 ssfi 8180 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑏 ∪ {𝑐}) ∈ Fin)
18968, 187, 188syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ∈ Fin)
190 simp-4l 806 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝜑)
191187sselda 3603 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑖𝐼)
192 simplr 792 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎𝑋)
193190, 191, 192, 85syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐴 ∈ ℂ)
194185, 186, 189, 193fsumsplit 14471 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴))
195 sumsns 14479 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
196110, 125, 195sylancr 695 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
197196oveq2d 6666 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴) = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
198194, 197eqtrd 2656 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
199198mpteq2dva 4744 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
200182, 199syl5eq 2668 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
201200adantrr 753 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
202201oveq2d 6666 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))))
203 nfcv 2764 . . . . . . . . . . . . . 14 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵
204179, 98nfsum 14421 . . . . . . . . . . . . . 14 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵
205100sumeq2sdv 14435 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
206203, 204, 205cbvmpt 4749 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
20775, 131nfim 1825 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
20880, 134imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)))
209207, 208, 127chvar 2262 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
210190, 191, 192, 209syl3anc 1326 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐵 ∈ ℂ)
211185, 186, 189, 210fsumsplit 14471 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵))
212 sumsns 14479 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
213110, 140, 212sylancr 695 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
214213oveq2d 6666 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵) = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
215211, 214eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
216215mpteq2dva 4744 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
217206, 216syl5eq 2668 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
218217adantrr 753 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
219177, 202, 2183eqtr4d 2666 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
220219exp32 631 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
221220a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑐𝑏) → (((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
22265, 221syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
223222expcom 451 . . . . . 6 𝑐𝑏 → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
224223adantl 482 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
225224a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
22611, 20, 29, 38, 61, 225findcard2s 8201 . . 3 (𝐼 ∈ Fin → (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
2272, 226mpcom 38 . 2 (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
2281, 227mpi 20 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  Σcsu 14416  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  TopOnctopon 20715   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvply1  24039  dvtaylp  24124  pserdvlem2  24182  advlogexp  24401  dvnmul  40158  dirkeritg  40319  etransclem2  40453
  Copyright terms: Public domain W3C validator