MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrlim Structured version   Visualization version   GIF version

Theorem fsumrlim 14543
Description: Limit of a finite sum of converging sequences. Note that 𝐶(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐷(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumrlim.1 (𝜑𝐴 ⊆ ℝ)
fsumrlim.2 (𝜑𝐵 ∈ Fin)
fsumrlim.3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
fsumrlim.4 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Assertion
Ref Expression
fsumrlim (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)   𝐷(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem fsumrlim
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . 2 𝐵𝐵
2 fsumrlim.2 . . 3 (𝜑𝐵 ∈ Fin)
3 sseq1 3626 . . . . . 6 (𝑤 = ∅ → (𝑤𝐵 ↔ ∅ ⊆ 𝐵))
4 sumeq1 14419 . . . . . . . . 9 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 sum0 14452 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐶 = 0
64, 5syl6eq 2672 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = 0)
76mpteq2dv 4745 . . . . . . 7 (𝑤 = ∅ → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ 0))
8 sumeq1 14419 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐷 = Σ𝑘 ∈ ∅ 𝐷)
9 sum0 14452 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐷 = 0
108, 9syl6eq 2672 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 𝐷 = 0)
117, 10breq12d 4666 . . . . . 6 (𝑤 = ∅ → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷 ↔ (𝑥𝐴 ↦ 0) ⇝𝑟 0))
123, 11imbi12d 334 . . . . 5 (𝑤 = ∅ → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷) ↔ (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ⇝𝑟 0)))
1312imbi2d 330 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ⇝𝑟 0))))
14 sseq1 3626 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
15 sumeq1 14419 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐶 = Σ𝑘𝑦 𝐶)
1615mpteq2dv 4745 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
17 sumeq1 14419 . . . . . . 7 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐷 = Σ𝑘𝑦 𝐷)
1816, 17breq12d 4666 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷 ↔ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷))
1914, 18imbi12d 334 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷) ↔ (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷)))
2019imbi2d 330 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷)) ↔ (𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷))))
21 sseq1 3626 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵))
22 sumeq1 14419 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
2322mpteq2dv 4745 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
24 sumeq1 14419 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐷 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)
2523, 24breq12d 4666 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷 ↔ (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))
2621, 25imbi12d 334 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))
2726imbi2d 330 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))))
28 sseq1 3626 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐵𝐵𝐵))
29 sumeq1 14419 . . . . . . . 8 (𝑤 = 𝐵 → Σ𝑘𝑤 𝐶 = Σ𝑘𝐵 𝐶)
3029mpteq2dv 4745 . . . . . . 7 (𝑤 = 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶))
31 sumeq1 14419 . . . . . . 7 (𝑤 = 𝐵 → Σ𝑘𝑤 𝐷 = Σ𝑘𝐵 𝐷)
3230, 31breq12d 4666 . . . . . 6 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷 ↔ (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷))
3328, 32imbi12d 334 . . . . 5 (𝑤 = 𝐵 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷) ↔ (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷)))
3433imbi2d 330 . . . 4 (𝑤 = 𝐵 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ⇝𝑟 Σ𝑘𝑤 𝐷)) ↔ (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷))))
35 fsumrlim.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
36 0cn 10032 . . . . . 6 0 ∈ ℂ
37 rlimconst 14275 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑥𝐴 ↦ 0) ⇝𝑟 0)
3835, 36, 37sylancl 694 . . . . 5 (𝜑 → (𝑥𝐴 ↦ 0) ⇝𝑟 0)
3938a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ⇝𝑟 0))
40 ssun1 3776 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
41 sstr 3611 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦𝐵)
4240, 41mpan 706 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐵𝑦𝐵)
4342imim1i 63 . . . . . . . 8 ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷))
44 sumex 14418 . . . . . . . . . . . . . 14 Σ𝑘𝑦 𝑤 / 𝑥𝐶 ∈ V
4544a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) ∧ 𝑤𝐴) → Σ𝑘𝑦 𝑤 / 𝑥𝐶 ∈ V)
46 simprr 796 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵)
4746unssbd 3791 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵)
48 vex 3203 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
4948snss 4316 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 ↔ {𝑧} ⊆ 𝐵)
5047, 49sylibr 224 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧𝐵)
5150adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧𝐵)
52 fsumrlim.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
5352anass1rs 849 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶𝑉)
54 fsumrlim.4 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
5553, 54rlimmptrcl 14338 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
5655an32s 846 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5756adantllr 755 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5857ralrimiva 2966 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℂ)
59 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑧 / 𝑘𝐶
6059nfel1 2779 . . . . . . . . . . . . . . . . . . 19 𝑘𝑧 / 𝑘𝐶 ∈ ℂ
61 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6261eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ 𝑧 / 𝑘𝐶 ∈ ℂ))
6360, 62rspc 3303 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑧 / 𝑘𝐶 ∈ ℂ))
6451, 58, 63sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧 / 𝑘𝐶 ∈ ℂ)
6564ralrimiva 2966 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥𝐴 𝑧 / 𝑘𝐶 ∈ ℂ)
6665adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → ∀𝑥𝐴 𝑧 / 𝑘𝐶 ∈ ℂ)
67 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝑧 / 𝑘𝐶
6867nfel1 2779 . . . . . . . . . . . . . . . 16 𝑥𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ ℂ
69 csbeq1a 3542 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝑧 / 𝑘𝐶 = 𝑤 / 𝑥𝑧 / 𝑘𝐶)
7069eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑧 / 𝑘𝐶 ∈ ℂ ↔ 𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ ℂ))
7168, 70rspc 3303 . . . . . . . . . . . . . . 15 (𝑤𝐴 → (∀𝑥𝐴 𝑧 / 𝑘𝐶 ∈ ℂ → 𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ ℂ))
7266, 71mpan9 486 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) ∧ 𝑤𝐴) → 𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ ℂ)
73 elex 3212 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ ℂ → 𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ V)
7472, 73syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) ∧ 𝑤𝐴) → 𝑤 / 𝑥𝑧 / 𝑘𝐶 ∈ V)
75 nfcv 2764 . . . . . . . . . . . . . . 15 𝑤Σ𝑘𝑦 𝐶
76 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑥𝑦
77 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑥𝑤 / 𝑥𝐶
7876, 77nfsum 14421 . . . . . . . . . . . . . . 15 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐶
79 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤𝐶 = 𝑤 / 𝑥𝐶)
8079sumeq2sdv 14435 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐶 = Σ𝑘𝑦 𝑤 / 𝑥𝐶)
8175, 78, 80cbvmpt 4749 . . . . . . . . . . . . . 14 (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) = (𝑤𝐴 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐶)
82 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷)
8381, 82syl5eqbrr 4689 . . . . . . . . . . . . 13 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑤𝐴 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷)
84 nfcv 2764 . . . . . . . . . . . . . . 15 𝑤𝑧 / 𝑘𝐶
8584, 67, 69cbvmpt 4749 . . . . . . . . . . . . . 14 (𝑥𝐴𝑧 / 𝑘𝐶) = (𝑤𝐴𝑤 / 𝑥𝑧 / 𝑘𝐶)
8654ralrimiva 2966 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝐵 (𝑥𝐴𝐶) ⇝𝑟 𝐷)
8786adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘𝐵 (𝑥𝐴𝐶) ⇝𝑟 𝐷)
88 nfcv 2764 . . . . . . . . . . . . . . . . . . 19 𝑘𝐴
8988, 59nfmpt 4746 . . . . . . . . . . . . . . . . . 18 𝑘(𝑥𝐴𝑧 / 𝑘𝐶)
90 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑘𝑟
91 nfcsb1v 3549 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐷
9289, 90, 91nfbr 4699 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝐴𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷
9361mpteq2dv 4745 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧 → (𝑥𝐴𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
94 csbeq1a 3542 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐷 = 𝑧 / 𝑘𝐷)
9593, 94breq12d 4666 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → ((𝑥𝐴𝐶) ⇝𝑟 𝐷 ↔ (𝑥𝐴𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷))
9692, 95rspc 3303 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → (∀𝑘𝐵 (𝑥𝐴𝐶) ⇝𝑟 𝐷 → (𝑥𝐴𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷))
9750, 87, 96sylc 65 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷)
9897adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑥𝐴𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷)
9985, 98syl5eqbrr 4689 . . . . . . . . . . . . 13 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑤𝐴𝑤 / 𝑥𝑧 / 𝑘𝐶) ⇝𝑟 𝑧 / 𝑘𝐷)
10045, 74, 83, 99rlimadd 14373 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑤𝐴 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐶 + 𝑤 / 𝑥𝑧 / 𝑘𝐶)) ⇝𝑟𝑘𝑦 𝐷 + 𝑧 / 𝑘𝐷))
101 simprl 794 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧𝑦)
102 disjsn 4246 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
103101, 102sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
104103adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∩ {𝑧}) = ∅)
105 eqidd 2623 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
1062adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin)
107 ssfi 8180 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → (𝑦 ∪ {𝑧}) ∈ Fin)
108106, 46, 107syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin)
109108adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
11046sselda 3603 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
111110adantlr 751 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
112111, 57syldan 487 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ)
113104, 105, 109, 112fsumsplit 14471 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶))
114 nfcv 2764 . . . . . . . . . . . . . . . . . . 19 𝑤𝐶
115 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . 19 𝑘𝑤 / 𝑘𝐶
116 csbeq1a 3542 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤𝐶 = 𝑤 / 𝑘𝐶)
117114, 115, 116cbvsumi 14427 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {𝑧}𝐶 = Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶
118 csbeq1 3536 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
119118sumsn 14475 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐵𝑧 / 𝑘𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
12051, 64, 119syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
121117, 120syl5eq 2668 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = 𝑧 / 𝑘𝐶)
122121oveq2d 6666 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
123113, 122eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
124123mpteq2dva 4744 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
125124adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
126 nfcv 2764 . . . . . . . . . . . . . 14 𝑤𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)
127 nfcv 2764 . . . . . . . . . . . . . . 15 𝑥 +
12878, 127, 67nfov 6676 . . . . . . . . . . . . . 14 𝑥𝑘𝑦 𝑤 / 𝑥𝐶 + 𝑤 / 𝑥𝑧 / 𝑘𝐶)
12980, 69oveq12d 6668 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶) = (Σ𝑘𝑦 𝑤 / 𝑥𝐶 + 𝑤 / 𝑥𝑧 / 𝑘𝐶))
130126, 128, 129cbvmpt 4749 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)) = (𝑤𝐴 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐶 + 𝑤 / 𝑥𝑧 / 𝑘𝐶))
131125, 130syl6eq 2672 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑤𝐴 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐶 + 𝑤 / 𝑥𝑧 / 𝑘𝐶)))
132 eqidd 2623 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
133 rlimcl 14234 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐶) ⇝𝑟 𝐷𝐷 ∈ ℂ)
13454, 133syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐵) → 𝐷 ∈ ℂ)
135134adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘𝐵) → 𝐷 ∈ ℂ)
136110, 135syldan 487 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐷 ∈ ℂ)
137103, 132, 108, 136fsumsplit 14471 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷))
138 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑤𝐷
139 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17 𝑘𝑤 / 𝑘𝐷
140 csbeq1a 3542 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑤𝐷 = 𝑤 / 𝑘𝐷)
141138, 139, 140cbvsumi 14427 . . . . . . . . . . . . . . . 16 Σ𝑘 ∈ {𝑧}𝐷 = Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐷
142135ralrimiva 2966 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘𝐵 𝐷 ∈ ℂ)
14391nfel1 2779 . . . . . . . . . . . . . . . . . . 19 𝑘𝑧 / 𝑘𝐷 ∈ ℂ
14494eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑧 → (𝐷 ∈ ℂ ↔ 𝑧 / 𝑘𝐷 ∈ ℂ))
145143, 144rspc 3303 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → (∀𝑘𝐵 𝐷 ∈ ℂ → 𝑧 / 𝑘𝐷 ∈ ℂ))
14650, 142, 145sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 / 𝑘𝐷 ∈ ℂ)
147 csbeq1 3536 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧𝑤 / 𝑘𝐷 = 𝑧 / 𝑘𝐷)
148147sumsn 14475 . . . . . . . . . . . . . . . . 17 ((𝑧𝐵𝑧 / 𝑘𝐷 ∈ ℂ) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐷 = 𝑧 / 𝑘𝐷)
14950, 146, 148syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐷 = 𝑧 / 𝑘𝐷)
150141, 149syl5eq 2668 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ {𝑧}𝐷 = 𝑧 / 𝑘𝐷)
151150oveq2d 6666 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (Σ𝑘𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷) = (Σ𝑘𝑦 𝐷 + 𝑧 / 𝑘𝐷))
152137, 151eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘𝑦 𝐷 + 𝑧 / 𝑘𝐷))
153152adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘𝑦 𝐷 + 𝑧 / 𝑘𝐷))
154100, 131, 1533brtr4d 4685 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)
155154ex 450 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))
156155expr 643 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))
157156a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))
15843, 157syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))
159158expcom 451 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))))
160159a2d 29 . . . . 5 𝑧𝑦 → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))))
161160adantl 482 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ⇝𝑟 Σ𝑘𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))))
16213, 20, 27, 34, 39, 161findcard2s 8201 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷)))
1632, 162mpcom 38 . 2 (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷))
1641, 163mpi 20 1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ⇝𝑟 Σ𝑘𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  𝑟 crli 14216  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  climfsum  14552  logexprlim  24950  signsplypnf  30627
  Copyright terms: Public domain W3C validator