HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdmd Structured version   Visualization version   GIF version

Theorem dmdmd 29159
Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdmd ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))

Proof of Theorem dmdmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (𝑦 ⊆ (⊥‘𝐵) ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
2 oveq1 6657 . . . . . . . . 9 (𝑦 = (⊥‘𝑥) → (𝑦 (⊥‘𝐴)) = ((⊥‘𝑥) ∨ (⊥‘𝐴)))
32ineq1d 3813 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)))
4 oveq1 6657 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))
53, 4eqeq12d 2637 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) ↔ (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
61, 5imbi12d 334 . . . . . 6 (𝑦 = (⊥‘𝑥) → ((𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
76rspccv 3306 . . . . 5 (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8 choccl 28165 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
98imim1i 63 . . . . . . . . . 10 (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
109com12 32 . . . . . . . . 9 (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
1110adantl 482 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
12 chsscon3 28359 . . . . . . . . . . 11 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1312biimpd 219 . . . . . . . . . 10 ((𝐵C𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1413adantll 750 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
15 fveq2 6191 . . . . . . . . . 10 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
16 choccl 28165 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
17 chjcl 28216 . . . . . . . . . . . . . . . 16 (((⊥‘𝑥) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
188, 16, 17syl2an 494 . . . . . . . . . . . . . . 15 ((𝑥C𝐴C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
19 chdmm3 28386 . . . . . . . . . . . . . . 15 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
2018, 19sylan 488 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
21 chdmj4 28391 . . . . . . . . . . . . . . . 16 ((𝑥C𝐴C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2221adantr 481 . . . . . . . . . . . . . . 15 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2322oveq1d 6665 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2420, 23eqtrd 2656 . . . . . . . . . . . . 13 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
2524anasss 679 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
26 choccl 28165 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
27 chincl 28358 . . . . . . . . . . . . . . 15 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
2816, 26, 27syl2an 494 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
29 chdmj2 28389 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C ) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
3028, 29sylan2 491 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
31 chdmm4 28387 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3231adantl 482 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3332ineq2d 3814 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3430, 33eqtrd 2656 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3525, 34eqeq12d 2637 . . . . . . . . . . 11 ((𝑥C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3635ancoms 469 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3715, 36syl5ib 234 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3814, 37imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3911, 38syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
4039ex 450 . . . . . 6 ((𝐴C𝐵C ) → (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4140com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
427, 41syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4342ralrimdv 2968 . . 3 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
44 sseq2 3627 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (𝐵𝑥𝐵 ⊆ (⊥‘𝑦)))
45 ineq1 3807 . . . . . . . . 9 (𝑥 = (⊥‘𝑦) → (𝑥𝐴) = ((⊥‘𝑦) ∩ 𝐴))
4645oveq1d 6665 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → ((𝑥𝐴) ∨ 𝐵) = (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵))
47 ineq1 3807 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → (𝑥 ∩ (𝐴 𝐵)) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))
4846, 47eqeq12d 2637 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))))
4944, 48imbi12d 334 . . . . . 6 (𝑥 = (⊥‘𝑦) → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5049rspccv 3306 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
51 choccl 28165 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
5251imim1i 63 . . . . . . . . . 10 (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5352com12 32 . . . . . . . . 9 (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5453adantl 482 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
55 chsscon2 28361 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝐵 ⊆ (⊥‘𝑦) ↔ 𝑦 ⊆ (⊥‘𝐵)))
5655biimprd 238 . . . . . . . . . 10 ((𝐵C𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
5756adantll 750 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
58 fveq2 6191 . . . . . . . . . 10 ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))))
59 chincl 28358 . . . . . . . . . . . . . . . 16 (((⊥‘𝑦) ∈ C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
6051, 59sylan 488 . . . . . . . . . . . . . . 15 ((𝑦C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
61 chdmj1 28388 . . . . . . . . . . . . . . 15 ((((⊥‘𝑦) ∩ 𝐴) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
6260, 61sylan 488 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
63 chdmm2 28385 . . . . . . . . . . . . . . . 16 ((𝑦C𝐴C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6463adantr 481 . . . . . . . . . . . . . . 15 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6564ineq1d 3813 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6662, 65eqtrd 2656 . . . . . . . . . . . . 13 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6766anasss 679 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
68 chjcl 28216 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
69 chdmm2 28385 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴 𝐵) ∈ C ) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
7068, 69sylan2 491 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
71 chdmj1 28388 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7271adantl 482 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7372oveq2d 6666 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (𝑦 (⊥‘(𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7470, 73eqtrd 2656 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7567, 74eqeq12d 2637 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7675ancoms 469 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7758, 76syl5ib 234 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7857, 77imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
7954, 78syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8079ex 450 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8180com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8250, 81syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8382ralrimdv 2968 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8443, 83impbid 202 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
85 mdbr 29153 . . 3 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8616, 26, 85syl2an 494 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
87 dmdbr 29158 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
8884, 86, 873bitr4rd 301 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650   C cch 27786  cort 27787   chj 27790   𝑀 cmd 27823   𝑀* cdmd 27824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-chj 28169  df-md 29139  df-dmd 29140
This theorem is referenced by:  mddmd  29160  ssdmd1  29172  mdsldmd1i  29190  cvdmd  29196  dmdsym  29272  cmdmdi  29276
  Copyright terms: Public domain W3C validator