Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooshift Structured version   Visualization version   GIF version

Theorem iooshift 39748
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooshift.1 (𝜑𝐴 ∈ ℝ)
iooshift.2 (𝜑𝐵 ∈ ℝ)
iooshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iooshift (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iooshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3052 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3363 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1843 . . . . . . . 8 𝑧𝜑
6 nfv 1843 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3005 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1828 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1828 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1843 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
11 simp3 1063 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iooshift.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
13 iooshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1412, 13readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
1514rexrd 10089 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ*)
1615adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈ ℝ*)
17 iooshift.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
1817, 13readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
1918rexrd 10089 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ*)
2019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈ ℝ*)
21 ioossre 12235 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2322sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
2413adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ)
2523, 24readdcld 10069 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
2612adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2726rexrd 10089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
2817adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
2928rexrd 10089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
30 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
31 ioogtlb 39717 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3227, 29, 30, 31syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3326, 23, 24, 32ltadd1dd 10638 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇))
34 iooltub 39735 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3527, 29, 30, 34syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3623, 28, 24, 35ltadd1dd 10638 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇))
3716, 20, 25, 33, 36eliood 39720 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
38373adant3 1081 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
3911, 38eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
40393exp 1264 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
4140adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
429, 10, 41rexlimd 3026 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
434, 42mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
443, 43sylan2b 492 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
45 elioore 12205 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ)
4645adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4746recnd 10068 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
4812rexrd 10089 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
4948adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈ ℝ*)
5017rexrd 10089 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
5150adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈ ℝ*)
5213adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5346, 52resubcld 10458 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 10068 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5513recnd 10068 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 10393 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2628 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
5914adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
6015adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
6119adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
62 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
63 ioogtlb 39717 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6460, 61, 62, 63syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6559, 46, 52, 64ltsub1dd 10639 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
6658, 65eqbrtrd 4675 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥𝑇))
6718adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
68 iooltub 39735 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
6960, 61, 62, 68syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
7046, 67, 52, 69ltsub1dd 10639 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < ((𝐵 + 𝑇) − 𝑇))
7117recnd 10068 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
7271, 55pncand 10393 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7372adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7470, 73breqtrd 4679 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < 𝐵)
7549, 51, 53, 66, 74eliood 39720 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴(,)𝐵))
7655adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7747, 76npcand 10396 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7877eqcomd 2628 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
79 oveq1 6657 . . . . . . . 8 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
8079eqeq2d 2632 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = ((𝑥𝑇) + 𝑇)))
8180rspcev 3309 . . . . . 6 (((𝑥𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8275, 78, 81syl2anc 693 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8347, 82, 3sylanbrc 698 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
8444, 83impbida 877 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
8584eqrdv 2620 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
8685eqcomd 2628 1 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  wss 3574   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939  *cxr 10073   < clt 10074  cmin 10266  (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioo 12179
This theorem is referenced by:  cncfshiftioo  40105  fourierdlem48  40371  fourierdlem49  40372  fourierdlem89  40412  fourierdlem91  40414  fourierdlem92  40415
  Copyright terms: Public domain W3C validator