MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsfi Structured version   Visualization version   GIF version

Theorem ipodrsfi 17163
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
ipodrsfi (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑋

Proof of Theorem ipodrsfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋𝐴)
2 ipodrscl 17162 . . . . . 6 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
3 eqid 2622 . . . . . . 7 (toInc‘𝐴) = (toInc‘𝐴)
43ipobas 17155 . . . . . 6 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
52, 4syl 17 . . . . 5 ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴)))
653ad2ant1 1082 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴)))
71, 6sseqtrd 3641 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴)))
8 eqid 2622 . . . 4 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
9 eqid 2622 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
108, 9drsdirfi 16938 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
117, 10syld3an2 1373 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
126rexeqdv 3145 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧))
1323ad2ant1 1082 . . . . . . . . 9 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 ∈ V)
1413adantr 481 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝐴 ∈ V)
151sselda 3603 . . . . . . . . 9 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑤𝑋) → 𝑤𝐴)
1615adantrl 752 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑤𝐴)
17 simprl 794 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑧𝐴)
183, 9ipole 17158 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑤𝐴𝑧𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
1914, 16, 17, 18syl3anc 1326 . . . . . . 7 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2019anassrs 680 . . . . . 6 (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) ∧ 𝑤𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2120ralbidva 2985 . . . . 5 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤𝑋 𝑤𝑧))
22 unissb 4469 . . . . 5 ( 𝑋𝑧 ↔ ∀𝑤𝑋 𝑤𝑧)
2321, 22syl6bbr 278 . . . 4 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 𝑋𝑧))
2423rexbidva 3049 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2512, 24bitr3d 270 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2611, 25mpbid 222 1 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   cuni 4436   class class class wbr 4653  cfv 5888  Fincfn 7955  Basecbs 15857  lecple 15948  Dirsetcdrs 16927  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by:  isacs3lem  17166  isnacs3  37273
  Copyright terms: Public domain W3C validator