![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipodrsfi | Structured version Visualization version GIF version |
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
ipodrsfi | ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1062 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ 𝐴) | |
2 | ipodrscl 17162 | . . . . . 6 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | |
3 | eqid 2622 | . . . . . . 7 ⊢ (toInc‘𝐴) = (toInc‘𝐴) | |
4 | 3 | ipobas 17155 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴))) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴))) |
6 | 5 | 3ad2ant1 1082 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴))) |
7 | 1, 6 | sseqtrd 3641 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴))) |
8 | eqid 2622 | . . . 4 ⊢ (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴)) | |
9 | eqid 2622 | . . . 4 ⊢ (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴)) | |
10 | 8, 9 | drsdirfi 16938 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
11 | 7, 10 | syld3an2 1373 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
12 | 6 | rexeqdv 3145 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧)) |
13 | 2 | 3ad2ant1 1082 | . . . . . . . . 9 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 ∈ V) |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ V) |
15 | 1 | sselda 3603 | . . . . . . . . 9 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝐴) |
16 | 15 | adantrl 752 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝐴) |
17 | simprl 794 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝐴) | |
18 | 3, 9 | ipole 17158 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
19 | 14, 16, 17, 18 | syl3anc 1326 | . . . . . . 7 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
20 | 19 | anassrs 680 | . . . . . 6 ⊢ (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
21 | 20 | ralbidva 2985 | . . . . 5 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧)) |
22 | unissb 4469 | . . . . 5 ⊢ (∪ 𝑋 ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧) | |
23 | 21, 22 | syl6bbr 278 | . . . 4 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∪ 𝑋 ⊆ 𝑧)) |
24 | 23 | rexbidva 3049 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
25 | 12, 24 | bitr3d 270 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
26 | 11, 25 | mpbid 222 | 1 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 Fincfn 7955 Basecbs 15857 lecple 15948 Dirsetcdrs 16927 toInccipo 17151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-tset 15960 df-ple 15961 df-ocomp 15963 df-preset 16928 df-drs 16929 df-poset 16946 df-ipo 17152 |
This theorem is referenced by: isacs3lem 17166 isnacs3 37273 |
Copyright terms: Public domain | W3C validator |