| Step | Hyp | Ref
| Expression |
| 1 | | tsmsid.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 2 | | tsmsid.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | tsmsgsum.j |
. . . . . . . 8
⊢ 𝐽 = (TopOpen‘𝐺) |
| 4 | 2, 3 | istps 20738 |
. . . . . . 7
⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
| 5 | 1, 4 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 6 | | toponuni 20719 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
| 8 | 7 | eleq2d 2687 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ∪ 𝐽)) |
| 9 | | elfpw 8268 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin)) |
| 10 | 9 | simplbi 476 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) |
| 11 | 10 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ⊆ 𝐴) |
| 12 | | suppssdm 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
| 13 | | tsmsid.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 14 | | fdm 6051 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 16 | 12, 15 | syl5sseq 3653 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴) |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴) |
| 18 | 11, 17 | unssd 3789 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴) |
| 19 | 9 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin) |
| 21 | | tsmsid.w |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 22 | 21 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 ) |
| 23 | 22 | fsuppimpd 8282 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈
Fin) |
| 24 | | unfi 8227 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) →
(𝑦 ∪ (𝐹 supp 0 )) ∈
Fin) |
| 25 | 20, 23, 24 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈
Fin) |
| 26 | | elfpw 8268 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈
Fin)) |
| 27 | 18, 25, 26 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin)) |
| 28 | | ssun1 3776 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 )) |
| 29 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 ))) |
| 30 | 28, 29 | syl5sseqr 3654 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦 ⊆ 𝑧) |
| 31 | | pm5.5 351 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ 𝑧 → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 33 | | reseq2 5391 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) |
| 34 | 33 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg
(𝐹 ↾ 𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))) |
| 35 | 34 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg
(𝐹 ↾ 𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢)) |
| 36 | 32, 35 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢)) |
| 37 | 36 | rspcv 3305 |
. . . . . . . . . . 11
⊢ ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) →
(∀𝑧 ∈
(𝒫 𝐴 ∩
Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢)) |
| 38 | 27, 37 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢)) |
| 39 | | tsmsid.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐺) |
| 40 | | tsmsid.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 41 | 40 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd) |
| 42 | | tsmsid.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴 ∈ 𝑉) |
| 44 | 13 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴⟶𝐵) |
| 45 | | ssun2 3777 |
. . . . . . . . . . . . 13
⊢ (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )) |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))) |
| 47 | 2, 39, 41, 43, 44, 46, 22 | gsumres 18314 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹)) |
| 48 | 47 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢)) |
| 49 | 38, 48 | sylibd 229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢)) |
| 50 | 49 | rexlimdva 3031 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢)) |
| 51 | 21 | fsuppimpd 8282 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
| 52 | | elfpw 8268 |
. . . . . . . . . . . 12
⊢ ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈
Fin)) |
| 53 | 16, 51, 52 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin)) |
| 54 | 53 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin)) |
| 55 | 40 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd) |
| 56 | 42 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴 ∈ 𝑉) |
| 57 | 13 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴⟶𝐵) |
| 58 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧) |
| 59 | 21 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 ) |
| 60 | 2, 39, 55, 56, 57, 58, 59 | gsumres 18314 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹 ↾ 𝑧)) = (𝐺 Σg 𝐹)) |
| 61 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢) |
| 62 | 60, 61 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) |
| 63 | 62 | expr 643 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 64 | 63 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 65 | | sseq1 3626 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 supp 0 ) → (𝑦 ⊆ 𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧)) |
| 66 | 65 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹 supp 0 ) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 67 | 66 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹 supp 0 ) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 68 | 67 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 69 | 54, 64, 68 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) |
| 70 | 69 | expr 643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 71 | 50, 70 | impbid 202 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢)) |
| 72 | | disjsn 4246 |
. . . . . . . 8
⊢ ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬
(𝐺
Σg 𝐹) ∈ 𝑢) |
| 73 | 72 | necon2abii 2844 |
. . . . . . 7
⊢ ((𝐺 Σg
𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅) |
| 74 | 71, 73 | syl6bb 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅)) |
| 75 | 74 | imbi2d 330 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ (𝑥 ∈ 𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅))) |
| 76 | 75 | ralbidva 2985 |
. . . 4
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅))) |
| 77 | 8, 76 | anbi12d 747 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) ↔ (𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅)))) |
| 78 | | eqid 2622 |
. . . 4
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
| 79 | 2, 3, 78, 40, 1, 42, 13 | eltsms 21936 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))))) |
| 80 | | topontop 20718 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| 81 | 5, 80 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
| 82 | 2, 39, 40, 42, 13, 21 | gsumcl 18316 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 83 | 82 | snssd 4340 |
. . . . 5
⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) |
| 84 | 83, 7 | sseqtrd 3641 |
. . . 4
⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ 𝐽) |
| 85 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 86 | 85 | elcls2 20878 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ {(𝐺 Σg
𝐹)} ⊆ ∪ 𝐽)
→ (𝑥 ∈
((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅)))) |
| 87 | 81, 84, 86 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠
∅)))) |
| 88 | 77, 79, 87 | 3bitr4d 300 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))) |
| 89 | 88 | eqrdv 2620 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) |