MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisdlem Structured version   Visualization version   GIF version

Theorem latdisdlem 17189
Description: Lemma for latdisd 17190. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b 𝐵 = (Base‘𝐾)
latdisd.j = (join‘𝐾)
latdisd.m = (meet‘𝐾)
Assertion
Ref Expression
latdisdlem (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐾   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem latdisdlem
StepHypRef Expression
1 latdisd.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 latdisd.m . . . . . . . . 9 = (meet‘𝐾)
31, 2latmcl 17052 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦) ∈ 𝐵)
433adant3r3 1276 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦) ∈ 𝐵)
5 simpr1 1067 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
6 simpr3 1069 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
7 oveq1 6657 . . . . . . . . 9 (𝑢 = (𝑥 𝑦) → (𝑢 (𝑣 𝑤)) = ((𝑥 𝑦) (𝑣 𝑤)))
8 oveq1 6657 . . . . . . . . . 10 (𝑢 = (𝑥 𝑦) → (𝑢 𝑣) = ((𝑥 𝑦) 𝑣))
9 oveq1 6657 . . . . . . . . . 10 (𝑢 = (𝑥 𝑦) → (𝑢 𝑤) = ((𝑥 𝑦) 𝑤))
108, 9oveq12d 6668 . . . . . . . . 9 (𝑢 = (𝑥 𝑦) → ((𝑢 𝑣) (𝑢 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)))
117, 10eqeq12d 2637 . . . . . . . 8 (𝑢 = (𝑥 𝑦) → ((𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ ((𝑥 𝑦) (𝑣 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤))))
12 oveq1 6657 . . . . . . . . . 10 (𝑣 = 𝑥 → (𝑣 𝑤) = (𝑥 𝑤))
1312oveq2d 6666 . . . . . . . . 9 (𝑣 = 𝑥 → ((𝑥 𝑦) (𝑣 𝑤)) = ((𝑥 𝑦) (𝑥 𝑤)))
14 oveq2 6658 . . . . . . . . . 10 (𝑣 = 𝑥 → ((𝑥 𝑦) 𝑣) = ((𝑥 𝑦) 𝑥))
1514oveq1d 6665 . . . . . . . . 9 (𝑣 = 𝑥 → (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)))
1613, 15eqeq12d 2637 . . . . . . . 8 (𝑣 = 𝑥 → (((𝑥 𝑦) (𝑣 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)) ↔ ((𝑥 𝑦) (𝑥 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤))))
17 oveq2 6658 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥 𝑤) = (𝑥 𝑧))
1817oveq2d 6666 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥 𝑦) (𝑥 𝑤)) = ((𝑥 𝑦) (𝑥 𝑧)))
19 oveq2 6658 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑥 𝑦) 𝑤) = ((𝑥 𝑦) 𝑧))
2019oveq2d 6666 . . . . . . . . 9 (𝑤 = 𝑧 → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)))
2118, 20eqeq12d 2637 . . . . . . . 8 (𝑤 = 𝑧 → (((𝑥 𝑦) (𝑥 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)) ↔ ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
2211, 16, 21rspc3v 3325 . . . . . . 7 (((𝑥 𝑦) ∈ 𝐵𝑥𝐵𝑧𝐵) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
234, 5, 6, 22syl3anc 1326 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
2423imp 445 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)))
25 simpl 473 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾 ∈ Lat)
26 latdisd.j . . . . . . . . . 10 = (join‘𝐾)
271, 26latjcom 17059 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥 𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥 𝑦) 𝑥) = (𝑥 (𝑥 𝑦)))
2825, 4, 5, 27syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑥) = (𝑥 (𝑥 𝑦)))
291, 26, 2latabs1 17087 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑦𝐵) → (𝑥 (𝑥 𝑦)) = 𝑥)
30293adant3r3 1276 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑥 𝑦)) = 𝑥)
3128, 30eqtrd 2656 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑥) = 𝑥)
321, 26latjcom 17059 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥 𝑦) ∈ 𝐵𝑧𝐵) → ((𝑥 𝑦) 𝑧) = (𝑧 (𝑥 𝑦)))
3325, 4, 6, 32syl3anc 1326 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑧) = (𝑧 (𝑥 𝑦)))
3431, 33oveq12d 6668 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)) = (𝑥 (𝑧 (𝑥 𝑦))))
3534adantr 481 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)) = (𝑥 (𝑧 (𝑥 𝑦))))
36 simpr2 1068 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
37 oveq1 6657 . . . . . . . . . . 11 (𝑢 = 𝑧 → (𝑢 (𝑣 𝑤)) = (𝑧 (𝑣 𝑤)))
38 oveq1 6657 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 𝑣) = (𝑧 𝑣))
39 oveq1 6657 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 𝑤) = (𝑧 𝑤))
4038, 39oveq12d 6668 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 𝑣) (𝑢 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤)))
4137, 40eqeq12d 2637 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ (𝑧 (𝑣 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤))))
4212oveq2d 6666 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑧 (𝑣 𝑤)) = (𝑧 (𝑥 𝑤)))
43 oveq2 6658 . . . . . . . . . . . 12 (𝑣 = 𝑥 → (𝑧 𝑣) = (𝑧 𝑥))
4443oveq1d 6665 . . . . . . . . . . 11 (𝑣 = 𝑥 → ((𝑧 𝑣) (𝑧 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤)))
4542, 44eqeq12d 2637 . . . . . . . . . 10 (𝑣 = 𝑥 → ((𝑧 (𝑣 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤)) ↔ (𝑧 (𝑥 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤))))
46 oveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑥 𝑤) = (𝑥 𝑦))
4746oveq2d 6666 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑧 (𝑥 𝑤)) = (𝑧 (𝑥 𝑦)))
48 oveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑧 𝑤) = (𝑧 𝑦))
4948oveq2d 6666 . . . . . . . . . . 11 (𝑤 = 𝑦 → ((𝑧 𝑥) (𝑧 𝑤)) = ((𝑧 𝑥) (𝑧 𝑦)))
5047, 49eqeq12d 2637 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝑧 (𝑥 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤)) ↔ (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
5141, 45, 50rspc3v 3325 . . . . . . . . 9 ((𝑧𝐵𝑥𝐵𝑦𝐵) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
526, 5, 36, 51syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
5352imp 445 . . . . . . 7 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦)))
5453oveq2d 6666 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑧 (𝑥 𝑦))) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
551, 26latjcl 17051 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑥𝐵) → (𝑧 𝑥) ∈ 𝐵)
5625, 6, 5, 55syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑥) ∈ 𝐵)
571, 26latjcl 17051 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑦𝐵) → (𝑧 𝑦) ∈ 𝐵)
5825, 6, 36, 57syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑦) ∈ 𝐵)
591, 2latmass 17188 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵 ∧ (𝑧 𝑥) ∈ 𝐵 ∧ (𝑧 𝑦) ∈ 𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
6025, 5, 56, 58, 59syl13anc 1328 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
611, 26latjcom 17059 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑥𝐵) → (𝑧 𝑥) = (𝑥 𝑧))
6225, 6, 5, 61syl3anc 1326 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑥) = (𝑥 𝑧))
6362oveq2d 6666 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑧 𝑥)) = (𝑥 (𝑥 𝑧)))
641, 26, 2latabs2 17088 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑧𝐵) → (𝑥 (𝑥 𝑧)) = 𝑥)
6525, 5, 6, 64syl3anc 1326 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑥 𝑧)) = 𝑥)
6663, 65eqtrd 2656 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑧 𝑥)) = 𝑥)
671, 26latjcom 17059 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑦𝐵) → (𝑧 𝑦) = (𝑦 𝑧))
6825, 6, 36, 67syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑦) = (𝑦 𝑧))
6966, 68oveq12d 6668 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 (𝑦 𝑧)))
7060, 69eqtr3d 2658 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 ((𝑧 𝑥) (𝑧 𝑦))) = (𝑥 (𝑦 𝑧)))
7170adantr 481 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 ((𝑧 𝑥) (𝑧 𝑦))) = (𝑥 (𝑦 𝑧)))
7254, 71eqtrd 2656 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑧 (𝑥 𝑦))) = (𝑥 (𝑦 𝑧)))
7324, 35, 723eqtrrd 2661 . . . 4 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7473an32s 846 . . 3 (((𝐾 ∈ Lat ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7574ralrimivvva 2972 . 2 ((𝐾 ∈ Lat ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7675ex 450 1 (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  joincjn 16944  meetcmee 16945  Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ple 15961  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-odu 17129
This theorem is referenced by:  latdisd  17190
  Copyright terms: Public domain W3C validator