Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvbase Structured version   Visualization version   GIF version

Theorem ldualvbase 34413
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualvbase.f 𝐹 = (LFnl‘𝑊)
ldualvbase.d 𝐷 = (LDual‘𝑊)
ldualvbase.v 𝑉 = (Base‘𝐷)
ldualvbase.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualvbase (𝜑𝑉 = 𝐹)

Proof of Theorem ldualvbase
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2622 . . . 4 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3 eqid 2622 . . . 4 ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))
4 ldualvbase.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvbase.d . . . 4 𝐷 = (LDual‘𝑊)
6 eqid 2622 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2622 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2622 . . . 4 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2622 . . . 4 (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊))
10 eqid 2622 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
11 ldualvbase.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 34412 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6195 . 2 (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvbase.v . 2 𝑉 = (Base‘𝐷)
15 fvex 6201 . . . 4 (LFnl‘𝑊) ∈ V
164, 15eqeltri 2697 . . 3 𝐹 ∈ V
17 eqid 2622 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})
1817lmodbase 16018 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
1916, 18ax-mp 5 . 2 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
2013, 14, 193eqtr4g 2681 1 (𝜑𝑉 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {csn 4177  {ctp 4181  cop 4183   × cxp 5112  cres 5116  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  opprcoppr 18622  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ldual 34411
This theorem is referenced by:  ldualelvbase  34414  ldualgrplem  34432  lduallmodlem  34439  lclkr  36822  lclkrs  36828  lcfrvalsnN  36830  lcfrlem4  36834  lcfrlem5  36835  lcfrlem6  36836  lcfrlem16  36847  lcfr  36874  lcdvbase  36882  mapdunirnN  36939
  Copyright terms: Public domain W3C validator