![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version |
Description: Lemma for lduallmod 34440. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
lduallmod.p | ⊢ + = ∘𝑓 (+g‘𝑊) |
lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
lduallmod.t | ⊢ × = (.r‘𝑅) |
lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
Ref | Expression |
---|---|
lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
3 | eqid 2622 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | 1, 2, 3, 4 | ldualvbase 34413 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
6 | 5 | eqcomd 2628 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
7 | eqidd 2623 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
10 | eqid 2622 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
11 | 8, 9, 2, 10, 4 | ldualsca 34419 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
12 | 11 | eqcomd 2628 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
16 | 9, 15 | opprbas 18629 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
18 | eqid 2622 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 9, 18 | oppradd 18630 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
21 | 11 | fveq2d 6195 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
22 | eqid 2622 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 9, 22 | oppr1 18634 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
25 | 8 | lmodring 18871 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
26 | 9 | opprring 18631 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
28 | 2, 4 | ldualgrp 34433 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
29 | 4 | 3ad2ant1 1082 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
30 | simp2 1062 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
31 | simp3 1063 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 34426 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
33 | eqid 2622 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
34 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
35 | simpr1 1067 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
36 | simpr2 1068 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
37 | simpr3 1069 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 34430 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
39 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
40 | simpr1 1067 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
41 | simpr2 1068 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
42 | simpr3 1069 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 34431 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
44 | eqid 2622 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 34429 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
48 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
49 | 15, 22 | ringidcl 18568 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
51 | 50 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
52 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 34424 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘𝑓 × (𝑉 × {(1r‘𝑅)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 34371 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘𝑓 × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
55 | 53, 54 | eqtrd 2656 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 18869 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {csn 4177 × cxp 5112 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 1rcur 18501 Ringcrg 18547 opprcoppr 18622 LModclmod 18863 LFnlclfn 34344 LDualcld 34410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-lmod 18865 df-lfl 34345 df-ldual 34411 |
This theorem is referenced by: lduallmod 34440 |
Copyright terms: Public domain | W3C validator |