Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsval Structured version   Visualization version   GIF version

Theorem ldualvsval 34425
Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualvs.x (𝜑𝑋𝐾)
ldualvs.g (𝜑𝐺𝐹)
ldualvs.a (𝜑𝐴𝑉)
Assertion
Ref Expression
ldualvsval (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))

Proof of Theorem ldualvsval
StepHypRef Expression
1 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
3 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
5 ldualfvs.t . . . 4 × = (.r𝑅)
6 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualfvs.s . . . 4 = ( ·𝑠𝐷)
8 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
9 ldualvs.x . . . 4 (𝜑𝑋𝐾)
10 ldualvs.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 34424 . . 3 (𝜑 → (𝑋 𝐺) = (𝐺𝑓 × (𝑉 × {𝑋})))
1211fveq1d 6193 . 2 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝑓 × (𝑉 × {𝑋}))‘𝐴))
13 ldualvs.a . . 3 (𝜑𝐴𝑉)
14 fvex 6201 . . . . . 6 (Base‘𝑊) ∈ V
152, 14eqeltri 2697 . . . . 5 𝑉 ∈ V
1615a1i 11 . . . 4 (𝜑𝑉 ∈ V)
173, 4, 2, 1lflf 34350 . . . . . 6 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
188, 10, 17syl2anc 693 . . . . 5 (𝜑𝐺:𝑉𝐾)
19 ffn 6045 . . . . 5 (𝐺:𝑉𝐾𝐺 Fn 𝑉)
2018, 19syl 17 . . . 4 (𝜑𝐺 Fn 𝑉)
21 eqidd 2623 . . . 4 ((𝜑𝐴𝑉) → (𝐺𝐴) = (𝐺𝐴))
2216, 9, 20, 21ofc2 6921 . . 3 ((𝜑𝐴𝑉) → ((𝐺𝑓 × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2313, 22mpdan 702 . 2 (𝜑 → ((𝐺𝑓 × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2412, 23eqtrd 2656 1 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-sca 15957  df-vsca 15958  df-lfl 34345  df-ldual 34411
This theorem is referenced by:  ldualvsubval  34444  lcfrlem1  36831  lcdvsval  36893
  Copyright terms: Public domain W3C validator