| Step | Hyp | Ref
| Expression |
| 1 | | lfl0f.o |
. . . . 5
⊢ 0 =
(0g‘𝐷) |
| 2 | | fvex 6201 |
. . . . 5
⊢
(0g‘𝐷) ∈ V |
| 3 | 1, 2 | eqeltri 2697 |
. . . 4
⊢ 0 ∈
V |
| 4 | 3 | fconst 6091 |
. . 3
⊢ (𝑉 × { 0 }):𝑉⟶{ 0 } |
| 5 | | lfl0f.d |
. . . . 5
⊢ 𝐷 = (Scalar‘𝑊) |
| 6 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 7 | 5, 6, 1 | lmod0cl 18889 |
. . . 4
⊢ (𝑊 ∈ LMod → 0 ∈
(Base‘𝐷)) |
| 8 | 7 | snssd 4340 |
. . 3
⊢ (𝑊 ∈ LMod → { 0 } ⊆
(Base‘𝐷)) |
| 9 | | fss 6056 |
. . 3
⊢ (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆
(Base‘𝐷)) →
(𝑉 × { 0 }):𝑉⟶(Base‘𝐷)) |
| 10 | 4, 8, 9 | sylancr 695 |
. 2
⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷)) |
| 11 | 5 | lmodring 18871 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 12 | 11 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝐷 ∈ Ring) |
| 13 | | simplrl 800 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑟 ∈ (Base‘𝐷)) |
| 14 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘𝐷) = (.r‘𝐷) |
| 15 | 6, 14, 1 | ringrz 18588 |
. . . . . . . 8
⊢ ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r‘𝐷) 0 ) = 0 ) |
| 16 | 12, 13, 15 | syl2anc 693 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟(.r‘𝐷) 0 ) = 0 ) |
| 17 | 16 | oveq1d 6665 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0 ) = (
0
(+g‘𝐷)
0
)) |
| 18 | | ringgrp 18552 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) |
| 19 | 12, 18 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝐷 ∈ Grp) |
| 20 | 6, 1 | grpidcl 17450 |
. . . . . . . 8
⊢ (𝐷 ∈ Grp → 0 ∈
(Base‘𝐷)) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 0 ∈ (Base‘𝐷)) |
| 22 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 23 | 6, 22, 1 | grplid 17452 |
. . . . . . 7
⊢ ((𝐷 ∈ Grp ∧ 0 ∈
(Base‘𝐷)) → (
0
(+g‘𝐷)
0 ) =
0
) |
| 24 | 19, 21, 23 | syl2anc 693 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ( 0 (+g‘𝐷) 0 ) = 0 ) |
| 25 | 17, 24 | eqtrd 2656 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0 ) =
0
) |
| 26 | | simplrr 801 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
| 27 | 3 | fvconst2 6469 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 29 | 28 | oveq2d 6666 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r‘𝐷) 0 )) |
| 30 | 3 | fvconst2 6469 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 ) |
| 31 | 30 | adantl 482 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 ) |
| 32 | 29, 31 | oveq12d 6668 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0
)) |
| 33 | | simpll 790 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 34 | | lfl0f.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
| 35 | | eqid 2622 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 36 | 34, 5, 35, 6 | lmodvscl 18880 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
| 37 | 33, 13, 26, 36 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
| 38 | | simpr 477 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
| 39 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 40 | 34, 39 | lmodvacl 18877 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑟(
·𝑠 ‘𝑊)𝑥) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
| 41 | 33, 37, 38, 40 | syl3anc 1326 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
| 42 | 3 | fvconst2 6469 |
. . . . . 6
⊢ (((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = 0 ) |
| 43 | 41, 42 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = 0 ) |
| 44 | 25, 32, 43 | 3eqtr4rd 2667 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 45 | 44 | ralrimiva 2966 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) → ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 46 | 45 | ralrimivva 2971 |
. 2
⊢ (𝑊 ∈ LMod →
∀𝑟 ∈
(Base‘𝐷)∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 47 | | lfl0f.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑊) |
| 48 | 34, 39, 5, 35, 6, 22, 14, 47 | islfl 34347 |
. 2
⊢ (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))))) |
| 49 | 10, 46, 48 | mpbir2and 957 |
1
⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹) |