Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   Unicode version

Theorem lfl0f 34356
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d  |-  D  =  (Scalar `  W )
lfl0f.o  |-  .0.  =  ( 0g `  D )
lfl0f.v  |-  V  =  ( Base `  W
)
lfl0f.f  |-  F  =  (LFnl `  W )
Assertion
Ref Expression
lfl0f  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  F )

Proof of Theorem lfl0f
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5  |-  .0.  =  ( 0g `  D )
2 fvex 6201 . . . . 5  |-  ( 0g
`  D )  e. 
_V
31, 2eqeltri 2697 . . . 4  |-  .0.  e.  _V
43fconst 6091 . . 3  |-  ( V  X.  {  .0.  }
) : V --> {  .0.  }
5 lfl0f.d . . . . 5  |-  D  =  (Scalar `  W )
6 eqid 2622 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
75, 6, 1lmod0cl 18889 . . . 4  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  D )
)
87snssd 4340 . . 3  |-  ( W  e.  LMod  ->  {  .0.  } 
C_  ( Base `  D
) )
9 fss 6056 . . 3  |-  ( ( ( V  X.  {  .0.  } ) : V --> {  .0.  }  /\  {  .0.  }  C_  ( Base `  D ) )  -> 
( V  X.  {  .0.  } ) : V --> ( Base `  D )
)
104, 8, 9sylancr 695 . 2  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
) : V --> ( Base `  D ) )
115lmodring 18871 . . . . . . . . 9  |-  ( W  e.  LMod  ->  D  e. 
Ring )
1211ad2antrr 762 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  D  e.  Ring )
13 simplrl 800 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  r  e.  ( Base `  D
) )
14 eqid 2622 . . . . . . . . 9  |-  ( .r
`  D )  =  ( .r `  D
)
156, 14, 1ringrz 18588 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  r  e.  ( Base `  D
) )  ->  (
r ( .r `  D )  .0.  )  =  .0.  )
1612, 13, 15syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .r `  D )  .0.  )  =  .0.  )
1716oveq1d 6665 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D )  .0.  ) ( +g  `  D
)  .0.  )  =  (  .0.  ( +g  `  D )  .0.  )
)
18 ringgrp 18552 . . . . . . . 8  |-  ( D  e.  Ring  ->  D  e. 
Grp )
1912, 18syl 17 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  D  e.  Grp )
206, 1grpidcl 17450 . . . . . . . 8  |-  ( D  e.  Grp  ->  .0.  e.  ( Base `  D
) )
2119, 20syl 17 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  .0.  e.  ( Base `  D
) )
22 eqid 2622 . . . . . . . 8  |-  ( +g  `  D )  =  ( +g  `  D )
236, 22, 1grplid 17452 . . . . . . 7  |-  ( ( D  e.  Grp  /\  .0.  e.  ( Base `  D
) )  ->  (  .0.  ( +g  `  D
)  .0.  )  =  .0.  )
2419, 21, 23syl2anc 693 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (  .0.  ( +g  `  D
)  .0.  )  =  .0.  )
2517, 24eqtrd 2656 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D )  .0.  ) ( +g  `  D
)  .0.  )  =  .0.  )
26 simplrr 801 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  x  e.  V )
273fvconst2 6469 . . . . . . . 8  |-  ( x  e.  V  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2826, 27syl 17 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2928oveq2d 6666 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .r `  D ) ( ( V  X.  {  .0.  } ) `  x ) )  =  ( r ( .r `  D
)  .0.  ) )
303fvconst2 6469 . . . . . . 7  |-  ( y  e.  V  ->  (
( V  X.  {  .0.  } ) `  y
)  =  .0.  )
3130adantl 482 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  y
)  =  .0.  )
3229, 31oveq12d 6668 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D ) ( ( V  X.  {  .0.  } ) `  x
) ) ( +g  `  D ) ( ( V  X.  {  .0.  } ) `  y ) )  =  ( ( r ( .r `  D )  .0.  )
( +g  `  D )  .0.  ) )
33 simpll 790 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  W  e.  LMod )
34 lfl0f.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
35 eqid 2622 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
3634, 5, 35, 6lmodvscl 18880 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  D
)  /\  x  e.  V )  ->  (
r ( .s `  W ) x )  e.  V )
3733, 13, 26, 36syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .s `  W ) x )  e.  V )
38 simpr 477 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  y  e.  V )
39 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
4034, 39lmodvacl 18877 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) x )  e.  V  /\  y  e.  V )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V )
4133, 37, 38, 40syl3anc 1326 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V )
423fvconst2 6469 . . . . . 6  |-  ( ( ( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V  ->  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  .0.  )
4341, 42syl 17 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  (
( r ( .s
`  W ) x ) ( +g  `  W
) y ) )  =  .0.  )
4425, 32, 433eqtr4rd 2667 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  (
( r ( .s
`  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
4544ralrimiva 2966 . . 3  |-  ( ( W  e.  LMod  /\  (
r  e.  ( Base `  D )  /\  x  e.  V ) )  ->  A. y  e.  V  ( ( V  X.  {  .0.  } ) `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  D ) ( ( V  X.  {  .0.  } ) `  x ) ) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
4645ralrimivva 2971 . 2  |-  ( W  e.  LMod  ->  A. r  e.  ( Base `  D
) A. x  e.  V  A. y  e.  V  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
47 lfl0f.f . . 3  |-  F  =  (LFnl `  W )
4834, 39, 5, 35, 6, 22, 14, 47islfl 34347 . 2  |-  ( W  e.  LMod  ->  ( ( V  X.  {  .0.  } )  e.  F  <->  ( ( V  X.  {  .0.  }
) : V --> ( Base `  D )  /\  A. r  e.  ( Base `  D ) A. x  e.  V  A. y  e.  V  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) ) ) )
4910, 46, 48mpbir2and 957 1  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   Ringcrg 18547   LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  lkr0f  34381  lkrscss  34385  ldualgrplem  34432  ldual0v  34437  ldual0vcl  34438  lclkrlem1  36795  lclkr  36822  lclkrs  36828
  Copyright terms: Public domain W3C validator