MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmss Structured version   Visualization version   GIF version

Theorem lmss 21102
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1 𝐾 = (𝐽t 𝑌)
lmss.2 𝑍 = (ℤ𝑀)
lmss.3 (𝜑𝑌𝑉)
lmss.4 (𝜑𝐽 ∈ Top)
lmss.5 (𝜑𝑃𝑌)
lmss.6 (𝜑𝑀 ∈ ℤ)
lmss.7 (𝜑𝐹:𝑍𝑌)
Assertion
Ref Expression
lmss (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))

Proof of Theorem lmss
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6 (𝜑𝐽 ∈ Top)
2 eqid 2622 . . . . . . 7 𝐽 = 𝐽
32toptopon 20722 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
41, 3sylib 208 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5 lmcl 21101 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
64, 5sylan 488 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
7 lmfss 21100 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
84, 7sylan 488 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
9 rnss 5354 . . . . . 6 (𝐹 ⊆ (ℂ × 𝐽) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
108, 9syl 17 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
11 rnxpss 5566 . . . . 5 ran (ℂ × 𝐽) ⊆ 𝐽
1210, 11syl6ss 3615 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 𝐽)
136, 12jca 554 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
1413ex 450 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
15 inss2 3834 . . . . 5 (𝑌 𝐽) ⊆ 𝐽
16 lmss.1 . . . . . . 7 𝐾 = (𝐽t 𝑌)
17 lmss.3 . . . . . . . 8 (𝜑𝑌𝑉)
18 resttopon2 20972 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌𝑉) → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
194, 17, 18syl2anc 693 . . . . . . 7 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
2016, 19syl5eqel 2705 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(𝑌 𝐽)))
21 lmcl 21101 . . . . . 6 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2220, 21sylan 488 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2315, 22sseldi 3601 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 𝐽)
24 lmfss 21100 . . . . . . . 8 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
2520, 24sylan 488 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
26 rnss 5354 . . . . . . 7 (𝐹 ⊆ (ℂ × (𝑌 𝐽)) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
2725, 26syl 17 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
28 rnxpss 5566 . . . . . 6 ran (ℂ × (𝑌 𝐽)) ⊆ (𝑌 𝐽)
2927, 28syl6ss 3615 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ (𝑌 𝐽))
3029, 15syl6ss 3615 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 𝐽)
3123, 30jca 554 . . 3 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
3231ex 450 . 2 (𝜑 → (𝐹(⇝𝑡𝐾)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
33 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 𝐽)
34 lmss.5 . . . . . . . 8 (𝜑𝑃𝑌)
3534adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃𝑌)
3635, 33elind 3798 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 ∈ (𝑌 𝐽))
3733, 362thd 255 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃 𝐽𝑃 ∈ (𝑌 𝐽)))
3816eleq2i 2693 . . . . . . . . 9 (𝑣𝐾𝑣 ∈ (𝐽t 𝑌))
391adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ Top)
4017adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑌𝑉)
41 elrest 16088 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4239, 40, 41syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4342biimpa 501 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣 ∈ (𝐽t 𝑌)) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
4438, 43sylan2b 492 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
45 r19.29r 3073 . . . . . . . . . 10 ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → ∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
4635biantrud 528 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢 ↔ (𝑃𝑢𝑃𝑌)))
47 elin 3796 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (𝑢𝑌) ↔ (𝑃𝑢𝑃𝑌))
4846, 47syl6bbr 278 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢𝑃 ∈ (𝑢𝑌)))
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (ℤ𝑀)
5049uztrn2 11705 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹:𝑍𝑌)
5251adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍𝑌)
5352ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑌)
5453biantrud 528 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌)))
55 elin 3796 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ (𝑢𝑌) ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌))
5654, 55syl6bbr 278 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5750, 56sylan2 491 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5857anassrs 680 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5958ralbidva 2985 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6059rexbidva 3049 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6148, 60imbi12d 334 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6261adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6362biimpd 219 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
64 eleq2 2690 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (𝑃𝑣𝑃 ∈ (𝑢𝑌)))
65 eleq2 2690 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑢𝑌) → ((𝐹𝑘) ∈ 𝑣 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
6665rexralbidv 3058 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6764, 66imbi12d 334 . . . . . . . . . . . . . 14 (𝑣 = (𝑢𝑌) → ((𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6867imbi2d 330 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑌) → (((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)) ↔ ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))))
6963, 68syl5ibrcom 237 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑣 = (𝑢𝑌) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
7069impd 447 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7170rexlimdva 3031 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7245, 71syl5 34 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7372expdimp 453 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ ∃𝑢𝐽 𝑣 = (𝑢𝑌)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7444, 73syldan 487 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7574ralrimdva 2969 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7639adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝐽 ∈ Top)
7740adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑌𝑉)
78 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑢𝐽)
79 elrestr 16089 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8076, 77, 78, 79syl3anc 1326 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8180, 16syl6eleqr 2712 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ 𝐾)
8267rspcv 3305 . . . . . . . . 9 ((𝑢𝑌) ∈ 𝐾 → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8381, 82syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8483, 62sylibrd 249 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8584ralrimdva 2969 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8675, 85impbid 202 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
8737, 86anbi12d 747 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
8839, 3sylib 208 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐽))
89 lmss.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
9089adantr 481 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑀 ∈ ℤ)
91 ffn 6045 . . . . . . 7 (𝐹:𝑍𝑌𝐹 Fn 𝑍)
9252, 91syl 17 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹 Fn 𝑍)
93 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 𝐽)
94 df-f 5892 . . . . . 6 (𝐹:𝑍 𝐽 ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 𝐽))
9592, 93, 94sylanbrc 698 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍 𝐽)
96 eqidd 2623 . . . . 5 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9788, 49, 90, 95, 96lmbrf 21064 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))))
9820adantr 481 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐾 ∈ (TopOn‘(𝑌 𝐽)))
99 frn 6053 . . . . . . . 8 (𝐹:𝑍𝑌 → ran 𝐹𝑌)
10052, 99syl 17 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹𝑌)
101100, 93ssind 3837 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 ⊆ (𝑌 𝐽))
102 df-f 5892 . . . . . 6 (𝐹:𝑍⟶(𝑌 𝐽) ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ (𝑌 𝐽)))
10392, 101, 102sylanbrc 698 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍⟶(𝑌 𝐽))
10498, 49, 90, 103, 96lmbrf 21064 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐾)𝑃 ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
10587, 97, 1043bitr4d 300 . . 3 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
106105ex 450 . 2 (𝜑 → ((𝑃 𝐽 ∧ ran 𝐹 𝐽) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃)))
10714, 32, 106pm5.21ndd 369 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cz 11377  cuz 11687  t crest 16081  Topctop 20698  TopOnctopon 20715  𝑡clm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033
This theorem is referenced by:  1stckgen  21357  minvecolem4b  27734  minvecolem4  27736  hhsscms  28136  lmlim  29993  climreeq  39845  xlimclim  40050
  Copyright terms: Public domain W3C validator