| Step | Hyp | Ref
| Expression |
| 1 | | lsmelvalm.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| 2 | | lsmelvalm.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 3 | | eqid 2622 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 4 | | lsmelvalm.p |
. . . 4
⊢ ⊕ =
(LSSum‘𝐺) |
| 5 | 3, 4 | lsmelval 18064 |
. . 3
⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥))) |
| 6 | 1, 2, 5 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥))) |
| 7 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 8 | | eqid 2622 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 9 | 8 | subginvcl 17603 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑈) → ((invg‘𝐺)‘𝑥) ∈ 𝑈) |
| 10 | 7, 9 | sylan 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → ((invg‘𝐺)‘𝑥) ∈ 𝑈) |
| 11 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 12 | | lsmelvalm.m |
. . . . . . . . 9
⊢ − =
(-g‘𝐺) |
| 13 | | subgrcl 17599 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 14 | 1, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 15 | 14 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Grp) |
| 16 | 11 | subgss 17595 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
| 18 | 17 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ (Base‘𝐺)) |
| 19 | 18 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ (Base‘𝐺)) |
| 20 | 11 | subgss 17595 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 21 | 7, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑈 ⊆ (Base‘𝐺)) |
| 22 | 21 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝐺)) |
| 23 | 11, 3, 12, 8, 15, 19, 22 | grpsubinv 17488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → (𝑦 −
((invg‘𝐺)‘𝑥)) = (𝑦(+g‘𝐺)𝑥)) |
| 24 | 23 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → (𝑦(+g‘𝐺)𝑥) = (𝑦 −
((invg‘𝐺)‘𝑥))) |
| 25 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = ((invg‘𝐺)‘𝑥) → (𝑦 − 𝑧) = (𝑦 −
((invg‘𝐺)‘𝑥))) |
| 26 | 25 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑧 = ((invg‘𝐺)‘𝑥) → ((𝑦(+g‘𝐺)𝑥) = (𝑦 − 𝑧) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑦 −
((invg‘𝐺)‘𝑥)))) |
| 27 | 26 | rspcev 3309 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝑥) ∈ 𝑈 ∧ (𝑦(+g‘𝐺)𝑥) = (𝑦 −
((invg‘𝐺)‘𝑥))) → ∃𝑧 ∈ 𝑈 (𝑦(+g‘𝐺)𝑥) = (𝑦 − 𝑧)) |
| 28 | 10, 24, 27 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → ∃𝑧 ∈ 𝑈 (𝑦(+g‘𝐺)𝑥) = (𝑦 − 𝑧)) |
| 29 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝑋 = (𝑦(+g‘𝐺)𝑥) → (𝑋 = (𝑦 − 𝑧) ↔ (𝑦(+g‘𝐺)𝑥) = (𝑦 − 𝑧))) |
| 30 | 29 | rexbidv 3052 |
. . . . . 6
⊢ (𝑋 = (𝑦(+g‘𝐺)𝑥) → (∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧) ↔ ∃𝑧 ∈ 𝑈 (𝑦(+g‘𝐺)𝑥) = (𝑦 − 𝑧))) |
| 31 | 28, 30 | syl5ibrcom 237 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑥 ∈ 𝑈) → (𝑋 = (𝑦(+g‘𝐺)𝑥) → ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) |
| 32 | 31 | rexlimdva 3031 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥) → ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) |
| 33 | 8 | subginvcl 17603 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑧 ∈ 𝑈) → ((invg‘𝐺)‘𝑧) ∈ 𝑈) |
| 34 | 7, 33 | sylan 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → ((invg‘𝐺)‘𝑧) ∈ 𝑈) |
| 35 | 18 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → 𝑦 ∈ (Base‘𝐺)) |
| 36 | 21 | sselda 3603 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ (Base‘𝐺)) |
| 37 | 11, 3, 8, 12 | grpsubval 17465 |
. . . . . . . 8
⊢ ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦 − 𝑧) = (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑧))) |
| 38 | 35, 36, 37 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → (𝑦 − 𝑧) = (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑧))) |
| 39 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → (𝑦(+g‘𝐺)𝑥) = (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑧))) |
| 40 | 39 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → ((𝑦 − 𝑧) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦 − 𝑧) = (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑧)))) |
| 41 | 40 | rspcev 3309 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝑧) ∈ 𝑈 ∧ (𝑦 − 𝑧) = (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑧))) → ∃𝑥 ∈ 𝑈 (𝑦 − 𝑧) = (𝑦(+g‘𝐺)𝑥)) |
| 42 | 34, 38, 41 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑦 − 𝑧) = (𝑦(+g‘𝐺)𝑥)) |
| 43 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝑋 = (𝑦 − 𝑧) → (𝑋 = (𝑦(+g‘𝐺)𝑥) ↔ (𝑦 − 𝑧) = (𝑦(+g‘𝐺)𝑥))) |
| 44 | 43 | rexbidv 3052 |
. . . . . 6
⊢ (𝑋 = (𝑦 − 𝑧) → (∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥) ↔ ∃𝑥 ∈ 𝑈 (𝑦 − 𝑧) = (𝑦(+g‘𝐺)𝑥))) |
| 45 | 42, 44 | syl5ibrcom 237 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑇) ∧ 𝑧 ∈ 𝑈) → (𝑋 = (𝑦 − 𝑧) → ∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥))) |
| 46 | 45 | rexlimdva 3031 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧) → ∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥))) |
| 47 | 32, 46 | impbid 202 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) |
| 48 | 47 | rexbidva 3049 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ 𝑇 ∃𝑥 ∈ 𝑈 𝑋 = (𝑦(+g‘𝐺)𝑥) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) |
| 49 | 6, 48 | bitrd 268 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) |