MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Structured version   Visualization version   Unicode version

Theorem ltmnq 9794
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 9771 . . 3  |-  .Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 6052 . 2  |-  dom  .Q  =  ( Q.  X.  Q. )
3 ltrelnq 9748 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 9746 . 2  |-  -.  (/)  e.  Q.
5 elpqn 9747 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
653ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
7 xp1st 7198 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
86, 7syl 17 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
9 xp2nd 7199 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
106, 9syl 17 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
11 mulclpi 9715 . . . . . . . 8  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
128, 10, 11syl2anc 693 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
13 ltmpi 9726 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
1412, 13syl 17 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
15 fvex 6201 . . . . . . . 8  |-  ( 1st `  C )  e.  _V
16 fvex 6201 . . . . . . . 8  |-  ( 2nd `  C )  e.  _V
17 fvex 6201 . . . . . . . 8  |-  ( 1st `  A )  e.  _V
18 mulcompi 9718 . . . . . . . 8  |-  ( x  .N  y )  =  ( y  .N  x
)
19 mulasspi 9719 . . . . . . . 8  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
20 fvex 6201 . . . . . . . 8  |-  ( 2nd `  B )  e.  _V
2115, 16, 17, 18, 19, 20caov4 6865 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
22 fvex 6201 . . . . . . . 8  |-  ( 1st `  B )  e.  _V
23 fvex 6201 . . . . . . . 8  |-  ( 2nd `  A )  e.  _V
2415, 16, 22, 18, 19, 23caov4 6865 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  A ) ) )
2521, 24breq12i 4662 . . . . . 6  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  <->  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2614, 25syl6bb 276 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
27 ordpipq 9764 . . . . 5  |-  ( <.
( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.  <->  ( ( ( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2826, 27syl6bbr 278 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A
) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
) )
29 elpqn 9747 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
30293ad2ant1 1082 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
31 mulpipq2 9761 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
326, 30, 31syl2anc 693 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
33 elpqn 9747 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
34333ad2ant2 1083 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
35 mulpipq2 9761 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
366, 34, 35syl2anc 693 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
3732, 36breq12d 4666 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .pQ  A
)  <pQ  ( C  .pQ  B )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( 1st `  C )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
3828, 37bitr4d 271 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
39 ordpinq 9765 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
40393adant3 1081 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
41 mulpqnq 9763 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
4241ancoms 469 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
43423adant2 1080 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A )  =  ( /Q `  ( C  .pQ  A ) ) )
44 mulpqnq 9763 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
4544ancoms 469 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
46453adant1 1079 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B )  =  ( /Q `  ( C  .pQ  B ) ) )
4743, 46breq12d 4666 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( /Q `  ( C  .pQ  A
) )  <Q  ( /Q `  ( C  .pQ  B ) ) ) )
48 lterpq 9792 . . . 4  |-  ( ( C  .pQ  A ) 
<pQ  ( C  .pQ  B
)  <->  ( /Q `  ( C  .pQ  A ) )  <Q  ( /Q `  ( C  .pQ  B
) ) )
4947, 48syl6bbr 278 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
5038, 40, 493bitr4d 300 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
512, 3, 4, 50ndmovord 6824 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    .N cmi 9668    <N clti 9669    .pQ cmpq 9671    <pQ cltpq 9672   Q.cnq 9674   /Qcerq 9676    .Q cmq 9678    <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-ltnq 9740
This theorem is referenced by:  ltaddnq  9796  ltrnq  9801  addclprlem1  9838  mulclprlem  9841  mulclpr  9842  distrlem4pr  9848  1idpr  9851  prlem934  9855  prlem936  9869  reclem3pr  9871  reclem4pr  9872
  Copyright terms: Public domain W3C validator