| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltmnq | Structured version Visualization version Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltmnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnqf 9771 |
. . 3
| |
| 2 | 1 | fdmi 6052 |
. 2
|
| 3 | ltrelnq 9748 |
. 2
| |
| 4 | 0nnq 9746 |
. 2
| |
| 5 | elpqn 9747 |
. . . . . . . . . 10
| |
| 6 | 5 | 3ad2ant3 1084 |
. . . . . . . . 9
|
| 7 | xp1st 7198 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
|
| 9 | xp2nd 7199 |
. . . . . . . . 9
| |
| 10 | 6, 9 | syl 17 |
. . . . . . . 8
|
| 11 | mulclpi 9715 |
. . . . . . . 8
| |
| 12 | 8, 10, 11 | syl2anc 693 |
. . . . . . 7
|
| 13 | ltmpi 9726 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | fvex 6201 |
. . . . . . . 8
| |
| 16 | fvex 6201 |
. . . . . . . 8
| |
| 17 | fvex 6201 |
. . . . . . . 8
| |
| 18 | mulcompi 9718 |
. . . . . . . 8
| |
| 19 | mulasspi 9719 |
. . . . . . . 8
| |
| 20 | fvex 6201 |
. . . . . . . 8
| |
| 21 | 15, 16, 17, 18, 19, 20 | caov4 6865 |
. . . . . . 7
|
| 22 | fvex 6201 |
. . . . . . . 8
| |
| 23 | fvex 6201 |
. . . . . . . 8
| |
| 24 | 15, 16, 22, 18, 19, 23 | caov4 6865 |
. . . . . . 7
|
| 25 | 21, 24 | breq12i 4662 |
. . . . . 6
|
| 26 | 14, 25 | syl6bb 276 |
. . . . 5
|
| 27 | ordpipq 9764 |
. . . . 5
| |
| 28 | 26, 27 | syl6bbr 278 |
. . . 4
|
| 29 | elpqn 9747 |
. . . . . . 7
| |
| 30 | 29 | 3ad2ant1 1082 |
. . . . . 6
|
| 31 | mulpipq2 9761 |
. . . . . 6
| |
| 32 | 6, 30, 31 | syl2anc 693 |
. . . . 5
|
| 33 | elpqn 9747 |
. . . . . . 7
| |
| 34 | 33 | 3ad2ant2 1083 |
. . . . . 6
|
| 35 | mulpipq2 9761 |
. . . . . 6
| |
| 36 | 6, 34, 35 | syl2anc 693 |
. . . . 5
|
| 37 | 32, 36 | breq12d 4666 |
. . . 4
|
| 38 | 28, 37 | bitr4d 271 |
. . 3
|
| 39 | ordpinq 9765 |
. . . 4
| |
| 40 | 39 | 3adant3 1081 |
. . 3
|
| 41 | mulpqnq 9763 |
. . . . . . 7
| |
| 42 | 41 | ancoms 469 |
. . . . . 6
|
| 43 | 42 | 3adant2 1080 |
. . . . 5
|
| 44 | mulpqnq 9763 |
. . . . . . 7
| |
| 45 | 44 | ancoms 469 |
. . . . . 6
|
| 46 | 45 | 3adant1 1079 |
. . . . 5
|
| 47 | 43, 46 | breq12d 4666 |
. . . 4
|
| 48 | lterpq 9792 |
. . . 4
| |
| 49 | 47, 48 | syl6bbr 278 |
. . 3
|
| 50 | 38, 40, 49 | 3bitr4d 300 |
. 2
|
| 51 | 2, 3, 4, 50 | ndmovord 6824 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-mi 9696 df-lti 9697 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-mq 9737 df-1nq 9738 df-ltnq 9740 |
| This theorem is referenced by: ltaddnq 9796 ltrnq 9801 addclprlem1 9838 mulclprlem 9841 mulclpr 9842 distrlem4pr 9848 1idpr 9851 prlem934 9855 prlem936 9869 reclem3pr 9871 reclem4pr 9872 |
| Copyright terms: Public domain | W3C validator |