| Step | Hyp | Ref
| Expression |
| 1 | | ordom 7074 |
. . . . 5
⊢ Ord
ω |
| 2 | | ordwe 5736 |
. . . . 5
⊢ (Ord
ω → E We ω) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ E We
ω |
| 4 | | rdgeq2 7508 |
. . . . . . . . 9
⊢ (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0))) |
| 5 | 4 | reseq1d 5395 |
. . . . . . . 8
⊢ (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)) |
| 6 | | isoeq1 6567 |
. . . . . . . 8
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω,
(ℤ≥‘𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘𝐴)))) |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω,
(ℤ≥‘𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘𝐴)))) |
| 8 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) →
(ℤ≥‘𝐴) = (ℤ≥‘if(𝐴 ∈ ℤ, 𝐴, 0))) |
| 9 | | isoeq5 6571 |
. . . . . . . 8
⊢
((ℤ≥‘𝐴) = (ℤ≥‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘if(𝐴 ∈ ℤ, 𝐴, 0))))) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , <
(ω, (ℤ≥‘if(𝐴 ∈ ℤ, 𝐴, 0))))) |
| 11 | | 0z 11388 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 12 | 11 | elimel 4150 |
. . . . . . . 8
⊢ if(𝐴 ∈ ℤ, 𝐴, 0) ∈
ℤ |
| 13 | | eqid 2622 |
. . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) =
(rec((𝑥 ∈ V ↦
(𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾
ω) |
| 14 | 12, 13 | om2uzisoi 12753 |
. . . . . . 7
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E ,
< (ω, (ℤ≥‘if(𝐴 ∈ ℤ, 𝐴, 0))) |
| 15 | 7, 10, 14 | dedth2v 4143 |
. . . . . 6
⊢ (𝐴 ∈ ℤ →
(rec((𝑥 ∈ V ↦
(𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω,
(ℤ≥‘𝐴))) |
| 16 | | isocnv 6580 |
. . . . . 6
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , <
(ω, (ℤ≥‘𝐴)) → ◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E
((ℤ≥‘𝐴), ω)) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℤ → ◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E
((ℤ≥‘𝐴), ω)) |
| 18 | | dmres 5419 |
. . . . . . . 8
⊢ dom
(rec((𝑥 ∈ V ↦
(𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom
rec((𝑥 ∈ V ↦
(𝑥 + 1)), 𝐴)) |
| 19 | | omex 8540 |
. . . . . . . . 9
⊢ ω
∈ V |
| 20 | 19 | inex1 4799 |
. . . . . . . 8
⊢ (ω
∩ dom rec((𝑥 ∈ V
↦ (𝑥 + 1)), 𝐴)) ∈ V |
| 21 | 18, 20 | eqeltri 2697 |
. . . . . . 7
⊢ dom
(rec((𝑥 ∈ V ↦
(𝑥 + 1)), 𝐴) ↾ ω) ∈ V |
| 22 | | cnvimass 5485 |
. . . . . . 7
⊢ (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) |
| 23 | 21, 22 | ssexi 4803 |
. . . . . 6
⊢ (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V |
| 24 | 23 | ax-gen 1722 |
. . . . 5
⊢
∀𝑦(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V |
| 25 | | isowe2 6600 |
. . . . 5
⊢ ((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E
((ℤ≥‘𝐴), ω) ∧ ∀𝑦(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We
ω → < We (ℤ≥‘𝐴))) |
| 26 | 17, 24, 25 | sylancl 694 |
. . . 4
⊢ (𝐴 ∈ ℤ → ( E We
ω → < We (ℤ≥‘𝐴))) |
| 27 | 3, 26 | mpi 20 |
. . 3
⊢ (𝐴 ∈ ℤ → < We
(ℤ≥‘𝐴)) |
| 28 | | uzf 11690 |
. . . 4
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 29 | 28 | fdmi 6052 |
. . 3
⊢ dom
ℤ≥ = ℤ |
| 30 | 27, 29 | eleq2s 2719 |
. 2
⊢ (𝐴 ∈ dom
ℤ≥ → < We (ℤ≥‘𝐴)) |
| 31 | | we0 5109 |
. . 3
⊢ < We
∅ |
| 32 | | ndmfv 6218 |
. . . 4
⊢ (¬
𝐴 ∈ dom
ℤ≥ → (ℤ≥‘𝐴) = ∅) |
| 33 | | weeq2 5103 |
. . . 4
⊢
((ℤ≥‘𝐴) = ∅ → ( < We
(ℤ≥‘𝐴) ↔ < We ∅)) |
| 34 | 32, 33 | syl 17 |
. . 3
⊢ (¬
𝐴 ∈ dom
ℤ≥ → ( < We (ℤ≥‘𝐴) ↔ < We
∅)) |
| 35 | 31, 34 | mpbiri 248 |
. 2
⊢ (¬
𝐴 ∈ dom
ℤ≥ → < We (ℤ≥‘𝐴)) |
| 36 | 30, 35 | pm2.61i 176 |
1
⊢ < We
(ℤ≥‘𝐴) |