| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃) |
| 2 | 1 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑇:(0..^𝑛)⟶𝑃) |
| 3 | | simprl 794 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑎 ∈ dom (𝐹 ∘ 𝑇)) |
| 4 | | ismot.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (Base‘𝐺) |
| 5 | | ismot.m |
. . . . . . . . . . . . . 14
⊢ − =
(dist‘𝐺) |
| 6 | | motgrp.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 7 | | motcgrg.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 8 | 4, 5, 6, 7 | motf1o 25433 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| 9 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑃–1-1-onto→𝑃 → 𝐹:𝑃⟶𝑃) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑃⟶𝑃) |
| 11 | 10 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃⟶𝑃) |
| 12 | | fco 6058 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑃⟶𝑃 ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
| 13 | 11, 1, 12 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
| 14 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
| 15 | | fdm 6051 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃 → dom (𝐹 ∘ 𝑇) = (0..^𝑛)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → dom (𝐹 ∘ 𝑇) = (0..^𝑛)) |
| 17 | 3, 16 | eleqtrd 2703 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑎 ∈ (0..^𝑛)) |
| 18 | | fvco3 6275 |
. . . . . . 7
⊢ ((𝑇:(0..^𝑛)⟶𝑃 ∧ 𝑎 ∈ (0..^𝑛)) → ((𝐹 ∘ 𝑇)‘𝑎) = (𝐹‘(𝑇‘𝑎))) |
| 19 | 2, 17, 18 | syl2anc 693 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹 ∘ 𝑇)‘𝑎) = (𝐹‘(𝑇‘𝑎))) |
| 20 | | simprr 796 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑏 ∈ dom (𝐹 ∘ 𝑇)) |
| 21 | 20, 16 | eleqtrd 2703 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑏 ∈ (0..^𝑛)) |
| 22 | | fvco3 6275 |
. . . . . . 7
⊢ ((𝑇:(0..^𝑛)⟶𝑃 ∧ 𝑏 ∈ (0..^𝑛)) → ((𝐹 ∘ 𝑇)‘𝑏) = (𝐹‘(𝑇‘𝑏))) |
| 23 | 2, 21, 22 | syl2anc 693 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹 ∘ 𝑇)‘𝑏) = (𝐹‘(𝑇‘𝑏))) |
| 24 | 19, 23 | oveq12d 6668 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝐹‘(𝑇‘𝑎)) − (𝐹‘(𝑇‘𝑏)))) |
| 25 | 6 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺 ∈ 𝑉) |
| 26 | 25 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝐺 ∈ 𝑉) |
| 27 | 2, 17 | ffvelrnd 6360 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝑇‘𝑎) ∈ 𝑃) |
| 28 | 2, 21 | ffvelrnd 6360 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝑇‘𝑏) ∈ 𝑃) |
| 29 | 7 | ad3antrrr 766 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 30 | 4, 5, 26, 27, 28, 29 | motcgr 25431 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹‘(𝑇‘𝑎)) − (𝐹‘(𝑇‘𝑏))) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
| 31 | 24, 30 | eqtrd 2656 |
. . . 4
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
| 32 | 31 | ralrimivva 2971 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹 ∘ 𝑇)∀𝑏 ∈ dom (𝐹 ∘ 𝑇)(((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
| 33 | | motcgrg.r |
. . . 4
⊢ ∼ =
(cgrG‘𝐺) |
| 34 | | fzo0ssnn0 12548 |
. . . . . 6
⊢
(0..^𝑛) ⊆
ℕ0 |
| 35 | | nn0ssre 11296 |
. . . . . 6
⊢
ℕ0 ⊆ ℝ |
| 36 | 34, 35 | sstri 3612 |
. . . . 5
⊢
(0..^𝑛) ⊆
ℝ |
| 37 | 36 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ) |
| 38 | 4, 5, 33, 25, 37, 13, 1 | iscgrgd 25408 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹 ∘ 𝑇) ∼ 𝑇 ↔ ∀𝑎 ∈ dom (𝐹 ∘ 𝑇)∀𝑏 ∈ dom (𝐹 ∘ 𝑇)(((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏)))) |
| 39 | 32, 38 | mpbird 247 |
. 2
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇) ∼ 𝑇) |
| 40 | | motcgrg.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ Word 𝑃) |
| 41 | | iswrd 13307 |
. . 3
⊢ (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃) |
| 42 | 40, 41 | sylib 208 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃) |
| 43 | 39, 42 | r19.29a 3078 |
1
⊢ (𝜑 → (𝐹 ∘ 𝑇) ∼ 𝑇) |