| Step | Hyp | Ref
| Expression |
| 1 | | cmnmnd 18208 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 2 | 1 | ad2antrr 762 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd) |
| 3 | | mulgdi.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | mulgdi.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
| 5 | 3, 4 | mndcl 17301 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 6 | 5 | 3expb 1266 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 7 | 2, 6 | sylan 488 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 8 | | simpll 790 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ CMnd) |
| 9 | 3, 4 | cmncom 18209 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 10 | 9 | 3expb 1266 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 11 | 8, 10 | sylan 488 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 12 | 3, 4 | mndass 17302 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 13 | 2, 12 | sylan 488 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 14 | | simpr 477 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) |
| 15 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 16 | 14, 15 | syl6eleq 2711 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
(ℤ≥‘1)) |
| 17 | | simplr2 1104 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋 ∈ 𝐵) |
| 18 | | elfznn 12370 |
. . . . . 6
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) |
| 19 | | fvconst2g 6467 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑘) = 𝑋) |
| 20 | 17, 18, 19 | syl2an 494 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋) |
| 21 | 17 | adantr 481 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋 ∈ 𝐵) |
| 22 | 20, 21 | eqeltrd 2701 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵) |
| 23 | | simplr3 1105 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌 ∈ 𝐵) |
| 24 | | fvconst2g 6467 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{𝑌})‘𝑘) = 𝑌) |
| 25 | 23, 18, 24 | syl2an 494 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌) |
| 26 | 23 | adantr 481 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌 ∈ 𝐵) |
| 27 | 25, 26 | eqeltrd 2701 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵) |
| 28 | 3, 4 | mndcl 17301 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 29 | 2, 17, 23, 28 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵) |
| 30 | | fvconst2g 6467 |
. . . . . 6
⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌)) |
| 31 | 29, 18, 30 | syl2an 494 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌)) |
| 32 | 20, 25 | oveq12d 6668 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌)) |
| 33 | 31, 32 | eqtr4d 2659 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘))) |
| 34 | 7, 11, 13, 16, 22, 27, 33 | seqcaopr 12838 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ
× {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀))) |
| 35 | | mulgdi.m |
. . . . 5
⊢ · =
(.g‘𝐺) |
| 36 | | eqid 2622 |
. . . . 5
⊢ seq1(
+ ,
(ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)})) |
| 37 | 3, 4, 35, 36 | mulgnn 17547 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀)) |
| 38 | 14, 29, 37 | syl2anc 693 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀)) |
| 39 | | eqid 2622 |
. . . . . 6
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) |
| 40 | 3, 4, 35, 39 | mulgnn 17547 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
| 41 | 14, 17, 40 | syl2anc 693 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
| 42 | | eqid 2622 |
. . . . . 6
⊢ seq1(
+ ,
(ℕ × {𝑌})) =
seq1( + ,
(ℕ × {𝑌})) |
| 43 | 3, 4, 35, 42 | mulgnn 17547 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀)) |
| 44 | 14, 23, 43 | syl2anc 693 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀)) |
| 45 | 41, 44 | oveq12d 6668 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀))) |
| 46 | 34, 38, 45 | 3eqtr4d 2666 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 47 | 1 | ad2antrr 762 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd) |
| 48 | | simplr2 1104 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑋 ∈ 𝐵) |
| 49 | | simplr3 1105 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑌 ∈ 𝐵) |
| 50 | 47, 48, 49, 28 | syl3anc 1326 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵) |
| 51 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 52 | 3, 51, 35 | mulg0 17546 |
. . . . 5
⊢ ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g‘𝐺)) |
| 53 | 50, 52 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g‘𝐺)) |
| 54 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 55 | 54, 51 | mndidcl 17308 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 56 | 54, 4, 51 | mndlid 17311 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧
(0g‘𝐺)
∈ (Base‘𝐺))
→ ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
| 57 | 55, 56 | mpdan 702 |
. . . . . 6
⊢ (𝐺 ∈ Mnd →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
| 58 | 1, 57 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ CMnd →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
| 59 | 58 | ad2antrr 762 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
| 60 | 53, 59 | eqtr4d 2659 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g‘𝐺) + (0g‘𝐺))) |
| 61 | | simpr 477 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0) |
| 62 | 61 | oveq1d 6665 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌))) |
| 63 | 61 | oveq1d 6665 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋)) |
| 64 | 3, 51, 35 | mulg0 17546 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 65 | 48, 64 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g‘𝐺)) |
| 66 | 63, 65 | eqtrd 2656 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g‘𝐺)) |
| 67 | 61 | oveq1d 6665 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌)) |
| 68 | 3, 51, 35 | mulg0 17546 |
. . . . . 6
⊢ (𝑌 ∈ 𝐵 → (0 · 𝑌) = (0g‘𝐺)) |
| 69 | 49, 68 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g‘𝐺)) |
| 70 | 67, 69 | eqtrd 2656 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g‘𝐺)) |
| 71 | 66, 70 | oveq12d 6668 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g‘𝐺) + (0g‘𝐺))) |
| 72 | 60, 62, 71 | 3eqtr4d 2666 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 73 | | simpr1 1067 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈
ℕ0) |
| 74 | | elnn0 11294 |
. . 3
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
| 75 | 73, 74 | sylib 208 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0)) |
| 76 | 46, 72, 75 | mpjaodan 827 |
1
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |