MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Visualization version   GIF version

Theorem mulgnnass 17576
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnnass ((𝐺 ∈ SGrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnnass
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . 8 (𝑛 = 1 → (𝑛 · 𝑁) = (1 · 𝑁))
21oveq1d 6665 . . . . . . 7 (𝑛 = 1 → ((𝑛 · 𝑁) · 𝑋) = ((1 · 𝑁) · 𝑋))
3 oveq1 6657 . . . . . . 7 (𝑛 = 1 → (𝑛 · (𝑁 · 𝑋)) = (1 · (𝑁 · 𝑋)))
42, 3eqeq12d 2637 . . . . . 6 (𝑛 = 1 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋))))
54imbi2d 330 . . . . 5 (𝑛 = 1 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))))
6 oveq1 6657 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 · 𝑁) = (𝑚 · 𝑁))
76oveq1d 6665 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 · 𝑁) · 𝑋) = ((𝑚 · 𝑁) · 𝑋))
8 oveq1 6657 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · (𝑁 · 𝑋)) = (𝑚 · (𝑁 · 𝑋)))
97, 8eqeq12d 2637 . . . . . 6 (𝑛 = 𝑚 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))))
109imbi2d 330 . . . . 5 (𝑛 = 𝑚 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)))))
11 oveq1 6657 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑁) = ((𝑚 + 1) · 𝑁))
1211oveq1d 6665 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 · 𝑁) · 𝑋) = (((𝑚 + 1) · 𝑁) · 𝑋))
13 oveq1 6657 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · (𝑁 · 𝑋)) = ((𝑚 + 1) · (𝑁 · 𝑋)))
1412, 13eqeq12d 2637 . . . . . 6 (𝑛 = (𝑚 + 1) → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
1514imbi2d 330 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
16 oveq1 6657 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 · 𝑁) = (𝑀 · 𝑁))
1716oveq1d 6665 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 · 𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
18 oveq1 6657 . . . . . . 7 (𝑛 = 𝑀 → (𝑛 · (𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
1917, 18eqeq12d 2637 . . . . . 6 (𝑛 = 𝑀 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
2019imbi2d 330 . . . . 5 (𝑛 = 𝑀 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))))
21 nncn 11028 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221mulid2d 10058 . . . . . . . 8 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
23223ad2ant1 1082 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (1 · 𝑁) = 𝑁)
2423oveq1d 6665 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((1 · 𝑁) · 𝑋) = (𝑁 · 𝑋))
25 sgrpmgm 17289 . . . . . . . . . 10 (𝐺 ∈ SGrp → 𝐺 ∈ Mgm)
26253anim1i 1248 . . . . . . . . 9 ((𝐺 ∈ SGrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵))
27 mulgass.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
28 mulgass.t . . . . . . . . . 10 · = (.g𝐺)
2927, 28mulgnncl 17556 . . . . . . . . 9 ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
3026, 29syl 17 . . . . . . . 8 ((𝐺 ∈ SGrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
31303coml 1272 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (𝑁 · 𝑋) ∈ 𝐵)
3227, 28mulg1 17548 . . . . . . 7 ((𝑁 · 𝑋) ∈ 𝐵 → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3424, 33eqtr4d 2659 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))
35 oveq1 6657 . . . . . . . 8 (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
36 nncn 11028 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3736adantr 481 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 𝑚 ∈ ℂ)
38 1cnd 10056 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 1 ∈ ℂ)
39 simpr1 1067 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 𝑁 ∈ ℕ)
4039nncnd 11036 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 𝑁 ∈ ℂ)
4137, 38, 40adddird 10065 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + (1 · 𝑁)))
4223adantl 482 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (1 · 𝑁) = 𝑁)
4342oveq2d 6666 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → ((𝑚 · 𝑁) + (1 · 𝑁)) = ((𝑚 · 𝑁) + 𝑁))
4441, 43eqtrd 2656 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + 𝑁))
4544oveq1d 6665 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) + 𝑁) · 𝑋))
46 simpr3 1069 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 𝐺 ∈ SGrp)
47 nnmulcl 11043 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑚 · 𝑁) ∈ ℕ)
48473ad2antr1 1226 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (𝑚 · 𝑁) ∈ ℕ)
49 simpr2 1068 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → 𝑋𝐵)
50 eqid 2622 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
5127, 28, 50mulgnndir 17569 . . . . . . . . . . 11 ((𝐺 ∈ SGrp ∧ ((𝑚 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
5246, 48, 39, 49, 51syl13anc 1328 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
5345, 52eqtrd 2656 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
5427, 28, 50mulgnnp1 17549 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5531, 54sylan2 491 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5653, 55eqeq12d 2637 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → ((((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)) ↔ (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋))))
5735, 56syl5ibr 236 . . . . . . 7 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp)) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
5857ex 450 . . . . . 6 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
5958a2d 29 . . . . 5 (𝑚 ∈ ℕ → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))) → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
605, 10, 15, 20, 34, 59nnind 11038 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ SGrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
61603expd 1284 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → (𝐺 ∈ SGrp → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
6261com4r 94 . 2 (𝐺 ∈ SGrp → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
63623imp2 1282 1 ((𝐺 ∈ SGrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-mgm 17242  df-sgrp 17284  df-mulg 17541
This theorem is referenced by:  mulgnn0ass  17578
  Copyright terms: Public domain W3C validator