MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0ass Structured version   Visualization version   GIF version

Theorem mulgnn0ass 17578
Description: Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnn0ass ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 17299 . . . . . . . 8 (𝐺 ∈ Mnd → 𝐺 ∈ SGrp)
21adantr 481 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ SGrp)
32adantr 481 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝐺 ∈ SGrp)
4 simprl 794 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑀 ∈ ℕ)
5 simprr 796 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
6 simpr3 1069 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76adantr 481 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑋𝐵)
8 mulgass.b . . . . . . 7 𝐵 = (Base‘𝐺)
9 mulgass.t . . . . . . 7 · = (.g𝐺)
108, 9mulgnnass 17576 . . . . . 6 ((𝐺 ∈ SGrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
113, 4, 5, 7, 10syl13anc 1328 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1211expr 643 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
13 eqid 2622 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
148, 13, 9mulg0 17546 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
156, 14syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑋) = (0g𝐺))
16 simpr1 1067 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1716nn0cnd 11353 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℂ)
1817mul01d 10235 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · 0) = 0)
1918oveq1d 6665 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (0 · 𝑋))
2015oveq2d 6666 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (𝑀 · (0g𝐺)))
218, 9, 13mulgnn0z 17567 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
22213ad2antr1 1226 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0g𝐺)) = (0g𝐺))
2320, 22eqtrd 2656 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (0g𝐺))
2415, 19, 233eqtr4d 2666 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
2524adantr 481 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
26 oveq2 6658 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
2726oveq1d 6665 . . . . . 6 (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((𝑀 · 0) · 𝑋))
28 oveq1 6657 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2928oveq2d 6666 . . . . . 6 (𝑁 = 0 → (𝑀 · (𝑁 · 𝑋)) = (𝑀 · (0 · 𝑋)))
3027, 29eqeq12d 2637 . . . . 5 (𝑁 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))))
3125, 30syl5ibrcom 237 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
32 simpr2 1068 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
33 elnn0 11294 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3432, 33sylib 208 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3534adantr 481 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3612, 31, 35mpjaod 396 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
3736ex 450 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
3832nn0cnd 11353 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℂ)
3938mul02d 10234 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑁) = 0)
4039oveq1d 6665 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · 𝑋))
418, 9mulgnn0cl 17558 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
42413adant3r1 1274 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
438, 13, 9mulg0 17546 . . . . 5 ((𝑁 · 𝑋) ∈ 𝐵 → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4442, 43syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4515, 40, 443eqtr4d 2666 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋)))
46 oveq1 6657 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
4746oveq1d 6665 . . . 4 (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((0 · 𝑁) · 𝑋))
48 oveq1 6657 . . . 4 (𝑀 = 0 → (𝑀 · (𝑁 · 𝑋)) = (0 · (𝑁 · 𝑋)))
4947, 48eqeq12d 2637 . . 3 (𝑀 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋))))
5045, 49syl5ibrcom 237 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
51 elnn0 11294 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5216, 51sylib 208 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5337, 50, 52mpjaod 396 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  0cc0 9936   · cmul 9941  cn 11020  0cn0 11292  Basecbs 15857  0gc0g 16100  SGrpcsgrp 17283  Mndcmnd 17294  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541
This theorem is referenced by:  mulgass  17579  odmodnn0  17959
  Copyright terms: Public domain W3C validator