MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdi Structured version   Visualization version   GIF version

Theorem mulgsubdi 18235
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdi.b 𝐵 = (Base‘𝐺)
mulgsubdi.t · = (.g𝐺)
mulgsubdi.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))

Proof of Theorem mulgsubdi
StepHypRef Expression
1 simpl 473 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simpr1 1067 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
3 simpr2 1068 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 ablgrp 18198 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
54adantr 481 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
6 simpr3 1069 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
7 mulgsubdi.b . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2622 . . . . . 6 (invg𝐺) = (invg𝐺)
97, 8grpinvcl 17467 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
105, 6, 9syl2anc 693 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 mulgsubdi.t . . . . 5 · = (.g𝐺)
12 eqid 2622 . . . . 5 (+g𝐺) = (+g𝐺)
137, 11, 12mulgdi 18232 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
141, 2, 3, 10, 13syl13anc 1328 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
157, 11, 8mulgneg2 17575 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = (𝑀 · ((invg𝐺)‘𝑌)))
167, 11, 8mulgneg 17560 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
1715, 16eqtr3d 2658 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
185, 2, 6, 17syl3anc 1326 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
1918oveq2d 6666 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2014, 19eqtrd 2656 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
21 mulgsubdi.d . . . . 5 = (-g𝐺)
227, 12, 8, 21grpsubval 17465 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
233, 6, 22syl2anc 693 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2423oveq2d 6666 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))))
257, 11mulgcl 17559 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
265, 2, 3, 25syl3anc 1326 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
277, 11mulgcl 17559 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
285, 2, 6, 27syl3anc 1326 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
297, 12, 8, 21grpsubval 17465 . . 3 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
3026, 28, 29syl2anc 693 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
3120, 24, 303eqtr4d 2666 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  -cneg 10267  cz 11377  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  .gcmg 17540  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cmn 18195  df-abl 18196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator