![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubdi | Structured version Visualization version GIF version |
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdi.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdi.t | ⊢ · = (.g‘𝐺) |
mulgsubdi.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdi | ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) | |
2 | simpr1 1067 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
3 | simpr2 1068 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | ablgrp 18198 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
6 | simpr3 1069 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | mulgsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2622 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
9 | 7, 8 | grpinvcl 17467 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 693 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | mulgsubdi.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
12 | eqid 2622 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 7, 11, 12 | mulgdi 18232 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1328 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
15 | 7, 11, 8 | mulgneg2 17575 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (-𝑀 · 𝑌) = (𝑀 · ((invg‘𝐺)‘𝑌))) |
16 | 7, 11, 8 | mulgneg 17560 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (-𝑀 · 𝑌) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
17 | 15, 16 | eqtr3d 2658 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
18 | 5, 2, 6, 17 | syl3anc 1326 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
19 | 18 | oveq2d 6666 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
20 | 14, 19 | eqtrd 2656 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
21 | mulgsubdi.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
22 | 7, 12, 8, 21 | grpsubval 17465 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
23 | 3, 6, 22 | syl2anc 693 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
24 | 23 | oveq2d 6666 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)))) |
25 | 7, 11 | mulgcl 17559 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
26 | 5, 2, 3, 25 | syl3anc 1326 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
27 | 7, 11 | mulgcl 17559 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) ∈ 𝐵) |
28 | 5, 2, 6, 27 | syl3anc 1326 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑌) ∈ 𝐵) |
29 | 7, 12, 8, 21 | grpsubval 17465 | . . 3 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
30 | 26, 28, 29 | syl2anc 693 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
31 | 20, 24, 30 | 3eqtr4d 2666 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 -cneg 10267 ℤcz 11377 Basecbs 15857 +gcplusg 15941 Grpcgrp 17422 invgcminusg 17423 -gcsg 17424 .gcmg 17540 Abelcabl 18194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-cmn 18195 df-abl 18196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |