MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsum Structured version   Visualization version   GIF version

Theorem nfsum 14421
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵

Proof of Theorem nfsum
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 14417 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2764 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2764 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3596 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2764 . . . . . . . 8 𝑥𝑚
7 nfcv 2764 . . . . . . . 8 𝑥 +
83nfcri 2758 . . . . . . . . . 10 𝑥 𝑛𝐴
9 nfcv 2764 . . . . . . . . . . 11 𝑥𝑛
10 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
119, 10nfcsb 3551 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
12 nfcv 2764 . . . . . . . . . 10 𝑥0
138, 11, 12nfif 4115 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
142, 13nfmpt 4746 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
156, 7, 14nfseq 12811 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
16 nfcv 2764 . . . . . . 7 𝑥
17 nfcv 2764 . . . . . . 7 𝑥𝑧
1815, 16, 17nfbr 4699 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
195, 18nfan 1828 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
202, 19nfrex 3007 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
21 nfcv 2764 . . . . 5 𝑥
22 nfcv 2764 . . . . . . . 8 𝑥𝑓
23 nfcv 2764 . . . . . . . 8 𝑥(1...𝑚)
2422, 23, 3nff1o 6135 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
25 nfcv 2764 . . . . . . . . . 10 𝑥1
26 nfcv 2764 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
2726, 10nfcsb 3551 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
2821, 27nfmpt 4746 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2925, 7, 28nfseq 12811 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3029, 6nffv 6198 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3130nfeq2 2780 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3224, 31nfan 1828 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3332nfex 2154 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3421, 33nfrex 3007 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3520, 34nfor 1834 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3635nfiota 5855 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
371, 36nfcxfr 2762 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wnfc 2751  wrex 2913  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cio 5849  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-sum 14417
This theorem is referenced by:  fsum2dlem  14501  fsumcom2  14505  fsumcom2OLD  14506  fsumrlim  14543  fsumiun  14553  fsumcn  22673  fsum2cn  22674  nfitg1  23540  nfitg  23541  dvmptfsum  23738  fsumdvdscom  24911  binomcxplemdvsum  38554  binomcxplemnotnn0  38555  fsumcnf  39180  fsumiunss  39807  dvmptfprod  40160  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator