Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptfprod Structured version   Visualization version   GIF version

Theorem dvmptfprod 40160
Description: Function-builder for derivative, finite product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptfprod.iph 𝑖𝜑
dvmptfprod.jph 𝑗𝜑
dvmptfprod.j 𝐽 = (𝐾t 𝑆)
dvmptfprod.k 𝐾 = (TopOpen‘ℂfld)
dvmptfprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfprod.x (𝜑𝑋𝐽)
dvmptfprod.i (𝜑𝐼 ∈ Fin)
dvmptfprod.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfprod.b ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
dvmptfprod.d ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptfprod.bc (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
dvmptfprod (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
Distinct variable groups:   𝐴,𝑗   𝐶,𝑖   𝑖,𝐼,𝑗,𝑥   𝑆,𝑖,𝑗,𝑥   𝑖,𝑋,𝑗,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑥,𝑖)   𝐵(𝑥,𝑖,𝑗)   𝐶(𝑥,𝑗)   𝐽(𝑥,𝑖,𝑗)   𝐾(𝑥,𝑖,𝑗)

Proof of Theorem dvmptfprod
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvmptfprod.i . 2 (𝜑𝐼 ∈ Fin)
2 ssid 3624 . . 3 𝐼𝐼
32jctr 565 . 2 (𝜑 → (𝜑𝐼𝐼))
4 sseq1 3626 . . . . 5 (𝑎 = ∅ → (𝑎𝐼 ↔ ∅ ⊆ 𝐼))
54anbi2d 740 . . . 4 (𝑎 = ∅ → ((𝜑𝑎𝐼) ↔ (𝜑 ∧ ∅ ⊆ 𝐼)))
6 prodeq1 14639 . . . . . . 7 (𝑎 = ∅ → ∏𝑖𝑎 𝐴 = ∏𝑖 ∈ ∅ 𝐴)
76mpteq2dv 4745 . . . . . 6 (𝑎 = ∅ → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴))
87oveq2d 6666 . . . . 5 (𝑎 = ∅ → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)))
9 sumeq1 14419 . . . . . . 7 (𝑎 = ∅ → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
10 difeq1 3721 . . . . . . . . . 10 (𝑎 = ∅ → (𝑎 ∖ {𝑗}) = (∅ ∖ {𝑗}))
1110prodeq1d 14651 . . . . . . . . 9 (𝑎 = ∅ → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)
1211oveq2d 6666 . . . . . . . 8 (𝑎 = ∅ → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
1312sumeq2sdv 14435 . . . . . . 7 (𝑎 = ∅ → Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
149, 13eqtrd 2656 . . . . . 6 (𝑎 = ∅ → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
1514mpteq2dv 4745 . . . . 5 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
168, 15eqeq12d 2637 . . . 4 (𝑎 = ∅ → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))))
175, 16imbi12d 334 . . 3 (𝑎 = ∅ → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))))
18 sseq1 3626 . . . . 5 (𝑎 = 𝑏 → (𝑎𝐼𝑏𝐼))
1918anbi2d 740 . . . 4 (𝑎 = 𝑏 → ((𝜑𝑎𝐼) ↔ (𝜑𝑏𝐼)))
20 prodeq1 14639 . . . . . . 7 (𝑎 = 𝑏 → ∏𝑖𝑎 𝐴 = ∏𝑖𝑏 𝐴)
2120mpteq2dv 4745 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
2221oveq2d 6666 . . . . 5 (𝑎 = 𝑏 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)))
23 sumeq1 14419 . . . . . . 7 (𝑎 = 𝑏 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
24 difeq1 3721 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 ∖ {𝑗}) = (𝑏 ∖ {𝑗}))
2524prodeq1d 14651 . . . . . . . . 9 (𝑎 = 𝑏 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
2625oveq2d 6666 . . . . . . . 8 (𝑎 = 𝑏 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2726sumeq2sdv 14435 . . . . . . 7 (𝑎 = 𝑏 → Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2823, 27eqtrd 2656 . . . . . 6 (𝑎 = 𝑏 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2928mpteq2dv 4745 . . . . 5 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
3022, 29eqeq12d 2637 . . . 4 (𝑎 = 𝑏 → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))))
3119, 30imbi12d 334 . . 3 (𝑎 = 𝑏 → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))))
32 sseq1 3626 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
3332anbi2d 740 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑𝑎𝐼) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)))
34 prodeq1 14639 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖𝑎 𝐴 = ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)
3534mpteq2dv 4745 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))
3635oveq2d 6666 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)))
37 sumeq1 14419 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
38 difeq1 3721 . . . . . . . . . 10 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∖ {𝑗}) = ((𝑏 ∪ {𝑐}) ∖ {𝑗}))
3938prodeq1d 14651 . . . . . . . . 9 (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)
4039oveq2d 6666 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4140sumeq2sdv 14435 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4237, 41eqtrd 2656 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4342mpteq2dv 4745 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
4436, 43eqeq12d 2637 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))))
4533, 44imbi12d 334 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))))
46 sseq1 3626 . . . . 5 (𝑎 = 𝐼 → (𝑎𝐼𝐼𝐼))
4746anbi2d 740 . . . 4 (𝑎 = 𝐼 → ((𝜑𝑎𝐼) ↔ (𝜑𝐼𝐼)))
48 prodeq1 14639 . . . . . . 7 (𝑎 = 𝐼 → ∏𝑖𝑎 𝐴 = ∏𝑖𝐼 𝐴)
4948mpteq2dv 4745 . . . . . 6 (𝑎 = 𝐼 → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴))
5049oveq2d 6666 . . . . 5 (𝑎 = 𝐼 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)))
51 sumeq1 14419 . . . . . . 7 (𝑎 = 𝐼 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
52 difeq1 3721 . . . . . . . . . . . 12 (𝑎 = 𝐼 → (𝑎 ∖ {𝑗}) = (𝐼 ∖ {𝑗}))
5352prodeq1d 14651 . . . . . . . . . . 11 (𝑎 = 𝐼 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)
5453oveq2d 6666 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5554a1d 25 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑗𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
5655ralrimiv 2965 . . . . . . . 8 (𝑎 = 𝐼 → ∀𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5756sumeq2d 14432 . . . . . . 7 (𝑎 = 𝐼 → Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5851, 57eqtrd 2656 . . . . . 6 (𝑎 = 𝐼 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5958mpteq2dv 4745 . . . . 5 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
6050, 59eqeq12d 2637 . . . 4 (𝑎 = 𝐼 → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))))
6147, 60imbi12d 334 . . 3 (𝑎 = 𝐼 → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑𝐼𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))))
62 prod0 14673 . . . . . . . 8 𝑖 ∈ ∅ 𝐴 = 1
6362mpteq2i 4741 . . . . . . 7 (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴) = (𝑥𝑋 ↦ 1)
6463oveq2i 6661 . . . . . 6 (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 1))
6564a1i 11 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 1)))
66 dvmptfprod.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
67 dvmptfprod.x . . . . . . 7 (𝜑𝑋𝐽)
68 dvmptfprod.j . . . . . . . 8 𝐽 = (𝐾t 𝑆)
69 dvmptfprod.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
7069oveq1i 6660 . . . . . . . 8 (𝐾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
7168, 70eqtri 2644 . . . . . . 7 𝐽 = ((TopOpen‘ℂfld) ↾t 𝑆)
7267, 71syl6eleq 2711 . . . . . 6 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
73 1cnd 10056 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7466, 72, 73dvmptconst 40129 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 1)) = (𝑥𝑋 ↦ 0))
75 sum0 14452 . . . . . . . 8 Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴) = 0
7675eqcomi 2631 . . . . . . 7 0 = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)
7776mpteq2i 4741 . . . . . 6 (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
7877a1i 11 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
7965, 74, 783eqtrd 2660 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
8079adantr 481 . . 3 ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
81 simp3 1063 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
82 simp1r 1086 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ¬ 𝑐𝑏)
83 simpl 473 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝜑)
84 ssun1 3776 . . . . . . . . . . 11 𝑏 ⊆ (𝑏 ∪ {𝑐})
85 sstr2 3610 . . . . . . . . . . 11 (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼))
8684, 85ax-mp 5 . . . . . . . . . 10 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼)
8786adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏𝐼)
8883, 87jca 554 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝜑𝑏𝐼))
8988adantl 482 . . . . . . 7 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑𝑏𝐼))
90 simpl 473 . . . . . . 7 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))))
9189, 90mpd 15 . . . . . 6 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
92913adant1 1079 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
93 nfv 1843 . . . . . . 7 𝑥((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
94 nfcv 2764 . . . . . . . . 9 𝑥𝑆
95 nfcv 2764 . . . . . . . . 9 𝑥 D
96 nfmpt1 4747 . . . . . . . . 9 𝑥(𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)
9794, 95, 96nfov 6676 . . . . . . . 8 𝑥(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
98 nfmpt1 4747 . . . . . . . 8 𝑥(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
9997, 98nfeq 2776 . . . . . . 7 𝑥(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
10093, 99nfan 1828 . . . . . 6 𝑥(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
101 dvmptfprod.iph . . . . . . . . 9 𝑖𝜑
102 nfv 1843 . . . . . . . . 9 𝑖(𝑏 ∪ {𝑐}) ⊆ 𝐼
103101, 102nfan 1828 . . . . . . . 8 𝑖(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)
104 nfv 1843 . . . . . . . 8 𝑖 ¬ 𝑐𝑏
105103, 104nfan 1828 . . . . . . 7 𝑖((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
106 nfcv 2764 . . . . . . . . 9 𝑖𝑆
107 nfcv 2764 . . . . . . . . 9 𝑖 D
108 nfcv 2764 . . . . . . . . . 10 𝑖𝑋
109 nfcv 2764 . . . . . . . . . . 11 𝑖𝑏
110109nfcprod1 14640 . . . . . . . . . 10 𝑖𝑖𝑏 𝐴
111108, 110nfmpt 4746 . . . . . . . . 9 𝑖(𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)
112106, 107, 111nfov 6676 . . . . . . . 8 𝑖(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
113 nfcv 2764 . . . . . . . . . . 11 𝑖𝐶
114 nfcv 2764 . . . . . . . . . . 11 𝑖 ·
115 nfcv 2764 . . . . . . . . . . . 12 𝑖(𝑏 ∖ {𝑗})
116115nfcprod1 14640 . . . . . . . . . . 11 𝑖𝑖 ∈ (𝑏 ∖ {𝑗})𝐴
117113, 114, 116nfov 6676 . . . . . . . . . 10 𝑖(𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
118109, 117nfsum 14421 . . . . . . . . 9 𝑖Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
119108, 118nfmpt 4746 . . . . . . . 8 𝑖(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
120112, 119nfeq 2776 . . . . . . 7 𝑖(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
121105, 120nfan 1828 . . . . . 6 𝑖(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
122 dvmptfprod.jph . . . . . . . . 9 𝑗𝜑
123 nfv 1843 . . . . . . . . 9 𝑗(𝑏 ∪ {𝑐}) ⊆ 𝐼
124122, 123nfan 1828 . . . . . . . 8 𝑗(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)
125 nfv 1843 . . . . . . . 8 𝑗 ¬ 𝑐𝑏
126124, 125nfan 1828 . . . . . . 7 𝑗((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
127 nfcv 2764 . . . . . . . 8 𝑗(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
128 nfcv 2764 . . . . . . . . 9 𝑗𝑋
129 nfcv 2764 . . . . . . . . . 10 𝑗𝑏
130129nfsum1 14420 . . . . . . . . 9 𝑗Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
131128, 130nfmpt 4746 . . . . . . . 8 𝑗(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
132127, 131nfeq 2776 . . . . . . 7 𝑗(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
133126, 132nfan 1828 . . . . . 6 𝑗(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
134 nfcsb1v 3549 . . . . . 6 𝑖𝑐 / 𝑖𝐴
135 nfcsb1v 3549 . . . . . 6 𝑗𝑐 / 𝑗𝐶
13683ad2antrr 762 . . . . . . . 8 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝜑)
1371363ad2ant1 1082 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝜑)
138 simp2 1062 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝑖𝐼)
139 simp3 1063 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝑥𝑋)
140 dvmptfprod.a . . . . . . 7 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
141137, 138, 139, 140syl3anc 1326 . . . . . 6 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
142136, 1syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝐼 ∈ Fin)
14387ad2antrr 762 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏𝐼)
144 ssfi 8180 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → 𝑏 ∈ Fin)
145142, 143, 144syl2anc 693 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏 ∈ Fin)
146 vex 3203 . . . . . . 7 𝑐 ∈ V
147146a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑐 ∈ V)
148 simplr 792 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ¬ 𝑐𝑏)
149 simpllr 799 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
15066ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑆 ∈ {ℝ, ℂ})
151136ad2antrr 762 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝜑)
152143ad2antrr 762 . . . . . . . 8 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑏𝐼)
153 simpr 477 . . . . . . . 8 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑗𝑏)
154152, 153sseldd 3604 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑗𝐼)
155 simplr 792 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑥𝑋)
156 nfv 1843 . . . . . . . . . 10 𝑖 𝑗𝐼
157 nfv 1843 . . . . . . . . . 10 𝑖 𝑥𝑋
158101, 156, 157nf3an 1831 . . . . . . . . 9 𝑖(𝜑𝑗𝐼𝑥𝑋)
159 nfv 1843 . . . . . . . . 9 𝑖 𝐶 ∈ ℂ
160158, 159nfim 1825 . . . . . . . 8 𝑖((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)
161 eleq1 2689 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖𝐼𝑗𝐼))
1621613anbi2d 1404 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝑗𝐼𝑥𝑋)))
163 dvmptfprod.bc . . . . . . . . . 10 (𝑖 = 𝑗𝐵 = 𝐶)
164163eleq1d 2686 . . . . . . . . 9 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
165162, 164imbi12d 334 . . . . . . . 8 (𝑖 = 𝑗 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)))
166 dvmptfprod.b . . . . . . . 8 ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
167160, 165, 166chvar 2262 . . . . . . 7 ((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)
168151, 154, 155, 167syl3anc 1326 . . . . . 6 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝐶 ∈ ℂ)
169 simpr 477 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
17083adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝜑)
171 id 22 . . . . . . . . . . 11 ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
172146snid 4208 . . . . . . . . . . . . 13 𝑐 ∈ {𝑐}
173 elun2 3781 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑐} → 𝑐 ∈ (𝑏 ∪ {𝑐}))
174172, 173ax-mp 5 . . . . . . . . . . . 12 𝑐 ∈ (𝑏 ∪ {𝑐})
175174a1i 11 . . . . . . . . . . 11 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐 ∈ (𝑏 ∪ {𝑐}))
176171, 175sseldd 3604 . . . . . . . . . 10 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐𝐼)
177176ad2antlr 763 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑐𝐼)
178 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑥𝑋)
179 nfv 1843 . . . . . . . . . . . 12 𝑗 𝑐𝐼
180 nfv 1843 . . . . . . . . . . . 12 𝑗 𝑥𝑋
181122, 179, 180nf3an 1831 . . . . . . . . . . 11 𝑗(𝜑𝑐𝐼𝑥𝑋)
182 nfcv 2764 . . . . . . . . . . . 12 𝑗
183135, 182nfel 2777 . . . . . . . . . . 11 𝑗𝑐 / 𝑗𝐶 ∈ ℂ
184181, 183nfim 1825 . . . . . . . . . 10 𝑗((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
185 eleq1 2689 . . . . . . . . . . . 12 (𝑗 = 𝑐 → (𝑗𝐼𝑐𝐼))
1861853anbi2d 1404 . . . . . . . . . . 11 (𝑗 = 𝑐 → ((𝜑𝑗𝐼𝑥𝑋) ↔ (𝜑𝑐𝐼𝑥𝑋)))
187 csbeq1a 3542 . . . . . . . . . . . 12 (𝑗 = 𝑐𝐶 = 𝑐 / 𝑗𝐶)
188187eleq1d 2686 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝐶 ∈ ℂ ↔ 𝑐 / 𝑗𝐶 ∈ ℂ))
189186, 188imbi12d 334 . . . . . . . . . 10 (𝑗 = 𝑐 → (((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)))
190184, 189, 167chvar 2262 . . . . . . . . 9 ((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
191170, 177, 178, 190syl3anc 1326 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
192191adantlr 751 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
193192adantlr 751 . . . . . 6 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
194122, 179nfan 1828 . . . . . . . . . 10 𝑗(𝜑𝑐𝐼)
195 nfcv 2764 . . . . . . . . . . 11 𝑗(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴))
196128, 135nfmpt 4746 . . . . . . . . . . 11 𝑗(𝑥𝑋𝑐 / 𝑗𝐶)
197195, 196nfeq 2776 . . . . . . . . . 10 𝑗(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶)
198194, 197nfim 1825 . . . . . . . . 9 𝑗((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
199185anbi2d 740 . . . . . . . . . 10 (𝑗 = 𝑐 → ((𝜑𝑗𝐼) ↔ (𝜑𝑐𝐼)))
200 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑗 = 𝑐𝑗 / 𝑖𝐴 = 𝑐 / 𝑗𝑗 / 𝑖𝐴)
201 csbco 3543 . . . . . . . . . . . . . . 15 𝑐 / 𝑗𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴
202201a1i 11 . . . . . . . . . . . . . 14 (𝑗 = 𝑐𝑐 / 𝑗𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴)
203200, 202eqtrd 2656 . . . . . . . . . . . . 13 (𝑗 = 𝑐𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴)
204203mpteq2dv 4745 . . . . . . . . . . . 12 (𝑗 = 𝑐 → (𝑥𝑋𝑗 / 𝑖𝐴) = (𝑥𝑋𝑐 / 𝑖𝐴))
205204oveq2d 6666 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)))
206187mpteq2dv 4745 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝑥𝑋𝐶) = (𝑥𝑋𝑐 / 𝑗𝐶))
207205, 206eqeq12d 2637 . . . . . . . . . 10 (𝑗 = 𝑐 → ((𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶) ↔ (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶)))
208199, 207imbi12d 334 . . . . . . . . 9 (𝑗 = 𝑐 → (((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)) ↔ ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))))
209101, 156nfan 1828 . . . . . . . . . . 11 𝑖(𝜑𝑗𝐼)
210 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑖𝑗 / 𝑖𝐴
211108, 210nfmpt 4746 . . . . . . . . . . . . 13 𝑖(𝑥𝑋𝑗 / 𝑖𝐴)
212106, 107, 211nfov 6676 . . . . . . . . . . . 12 𝑖(𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴))
213 nfcv 2764 . . . . . . . . . . . 12 𝑖(𝑥𝑋𝐶)
214212, 213nfeq 2776 . . . . . . . . . . 11 𝑖(𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)
215209, 214nfim 1825 . . . . . . . . . 10 𝑖((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))
216161anbi2d 740 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖𝐼) ↔ (𝜑𝑗𝐼)))
217 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑖 = 𝑗𝐴 = 𝑗 / 𝑖𝐴)
218217mpteq2dv 4745 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑥𝑋𝐴) = (𝑥𝑋𝑗 / 𝑖𝐴))
219218oveq2d 6666 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)))
220163idi 2 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐵 = 𝐶)
221220mpteq2dv 4745 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑥𝑋𝐵) = (𝑥𝑋𝐶))
222219, 221eqeq12d 2637 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵) ↔ (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)))
223216, 222imbi12d 334 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))))
224 dvmptfprod.d . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
225215, 223, 224chvar 2262 . . . . . . . . 9 ((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))
226198, 208, 225chvar 2262 . . . . . . . 8 ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
227176, 226sylan2 491 . . . . . . 7 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
228227ad2antrr 762 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
229 csbeq1a 3542 . . . . . 6 (𝑖 = 𝑐𝐴 = 𝑐 / 𝑖𝐴)
230100, 121, 133, 134, 135, 141, 145, 147, 148, 149, 150, 168, 169, 193, 228, 229, 187dvmptfprodlem 40159 . . . . 5 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
23181, 82, 92, 230syl21anc 1325 . . . 4 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
2322313exp 1264 . . 3 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))))
23317, 31, 45, 61, 80, 232findcard2s 8201 . 2 (𝐼 ∈ Fin → ((𝜑𝐼𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))))
2341, 3, 233sylc 65 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  Vcvv 3200  csb 3533  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  {cpr 4179  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  Σcsu 14416  cprod 14635  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator